Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  PLA
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, a solution of dibutyrylchitin (DBC)/polylactide (PLA) blend micro and nanofibres were successfully fabricated using blends of 2,2,2-trifluoroethanol (TFE) as solvents. Fibres were produced from the solutions by electrospinning. The DBC/PLA blend solutions in various ratios were studied for electrospinning into micro/nanofibres. The morphology of the micro and nanofibres was observed by scanning electron microscope (SEM). The biggest diameters of DBC/PLA fibres were obtained for the blended microfibres in ratios of 10/90 and 25/75. The smallest diameter was observed for pure polymers. The antibacterial properties were examined for materials obtained by electrospinning. In the experiments, materials with antibacterial properties were made. It is likely that the electrospun micro and nanofibres will be used in the native extracellular matrix for tissue engineering.
EN
Ingeo® PLA (polylactic acid) knitted fabric was scoured through an exhaust technique. The scouring was carried out with sodium carbonate in the presence of a detergent at various concentrations and temperatures. The scoured fabric was bleached with various oxidative bleaching agents. Bleaching was carried out with hydrogen peroxide, sodium chlorite and sodium hypochlorite. Hydrogen peroxide was applied by exhaust and cold pad batch (CPB) techniques. It was observed that during scouring PLA fabric was degraded at high alkali concentrations and processing temperatures. The scouring temperature above 60ºC proved to be deleterious due to the scouring solution penetrating into the polymer structure and damaged the fiber. Sodium chlorite and sodium hypochlorite caused little damage to the mechanical properties of PLA. Hydrogen peroxide when applied by the CPB technique did not reduce strength appreciably but when applied by the exhaust technique decreased the strength significantly. SEM analysis revealed that hydrogen peroxide caused holes and slit formation in the fiber structure.
EN
The paper presents the results of the degradation of two commercial packaging materials CONS-PET and BioPlaneta in the compost and distilled water at 70°C. The materials containing polylactide (PLA), CONS-PET 13% and BioPlaneta 20%, aliphatic-aromatic copolyester terephthalic acid/adipic acid/1,4-butanediol (BTA) and commercial additives degraded under the industrial composting conditions (composting pile or container) and in distilled water at 70°C in the laboratory holding oven. Distilled water provided the conditions for the hydrolytic (abiotic) degradation of the materials. Weight loss, changes of molecular weight, dispersity monitored via the GPC technique and the macroscopic surface changes of the tested materials were monitored during the experiments. The investigated systems show similar trends of degradation, however on the last day of the incubation the decrease of the molecular weight was higher in water than under the industrial composting conditions. The results indicate that commercial packaging materials can be degraded both while composting ((bio)degradation) and during the incubation in distilled water at 70°C (abiotic hydrolysis).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.