Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  PARKINSON DISEASE
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 51
|
issue 4
509-514
EN
The MAPT gene has been shown to be associated with several neurodegenerative disorders, including forms of parkinsonism and Parkinson disease (PD), but the results reveal population differences. We investigated the association of 10 single-nucleotide polymorphisms (SNPs) in the region of MAPT on chromosome 17q21 with PD and age at onset, by using 443 discordant sib pairs in PD from a public dataset (Mayo-Perlegen LEAPS Collaboration). Association with PD was assessed by the FBAT using generalized estimating equations (FBAT-GEE), while the association with age at onset as a quantitative trait was evaluated using the FBAT-logrank statistic. Five SNPs were significantly associated with PD (P < 0.05) in an additive model, and 9 SNPs were associated with PD (P < 0.05) in dominant and recessive models. Interestingly, 8 PD-associated SNPs were also associated with age at onset of PD (P < 0.05) in dominant and recessive models. The SNP most significantly associated with PD and age at onset was rs17649641 (P = 0.015 and 0.021, respectively). Two-SNP haplotypes inferred from rs17563965 and rs17649641 also showed association with PD (P = 0.018) and age at onset (P = 0.026). These results provide further support for the role of MAPT in development of PD.
EN
Parkinson's disease is one of the most frequent human neurodegenerations. Motor symptoms of Parkinson's disease are the consequence of the destruction of nervous cells in the substantia nigra (SN), a small (about 500 mg) structure located deep in human brain. The concentration of iron in SN is comparable to that in liver and is equal to about 180 ? 60 ng/mg of wet tissue and the iron in SN is mostly bound to ferritin. For many years it has been believed that the degeneration of nervous cells in SN in Parkinson's disease is related to an important increase in the concentration of iron. Our own studies based on M?ssbauer spectroscopy and other studies conducted with the use of various techniques have not confirmed this finding. The ratio of the concentration of iron in PD vs. control SN evaluated by Mossbauer spectroscopy was found to be equal 1.00?0.13. We also confirmed that most of iron in SN is located within ferritin. ELISA studies demonstrated a significant decrease in L ferritin in parkinsonian SN compared to the control group. As L-ferritin is related to safe keeping of iron within the ferritin shell, its decrease may lead to an efflux of iron and increase in the concentration of labile iron. Indeed our studies did show a difference in the concentration of labile iron between PD and control SN (135 +- 10 ng/g vs. 76 +- 5 ng/g). This labile iron, which may initiate Fenton reaction, may be the cause of the oxidative stress leading to the death of nervous cells in PD.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.