Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Oxadiazole
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2007
|
vol. 5
|
issue 1
303-315
EN
2,5-bis-(4-biphenyl)-yl-1,3,4-oxadiazole (1a), 2,5-bis-(4-(6,8-difluoro)-biphenyl)-yl-1,3,4-oxadiazole (1b) and 2,5-bis-(4-(spiro-fluorenyl)-phenyl)-yl-1,3,4-oxadiazole (1c) were designed, synthesized and characterized. 1a–c were easily obtained from Suzuki reactions between 2,5-bis-(4-bromo-phynyl)-[1,3,4]oxadiazole (2) and aromatic boronic acids (3). They were characterized by 1H-NMR, DSC, TGA, UV-Vis, photoluminescence (PL) spectrometry and CV. The melting temperatures (T m) of 1a–c are 237, 208 and 370 °C, respectively, much higher than that of 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD, T m = 136 °C). The oxidation potentials of 1a–c are 1.86, 1.94 and 1.18 V, and their reduction potentials are −2.31, −2.22 and −2.27 V, respectively, indicating that the introduction of electronegative oxadiazole unit lowers the electron density in molecules and enhances their stabilities. The LUMO/HOMO energy levels of 1a–c are as low as −2.39/−6.56, −2.48/−6.69 and −2.43/−5.88 eV, respectively. The good thermal stabilities and low orbital levels of 1a–c make them promising electron-transporting or hole-blocking materials for organic optoelectronic devices.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.