Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Molecular imprinting
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In February 1993, the group of Klaus Mosbach published their milestone study in Nature where, for the first time, non-covalent molecular imprints were employed in a competitive binding assay. In this seminal piece of work, and also for the first time, they refer to molecularly imprinted polymers as being ‘antibody mimics’ and hypothesised that these synthetic materials could one day provide ‘a useful, general alternative to antibodies’. This perspective article examines how far we have come in the 20 years since this publication in terms of realising this hypothesis and poses the question of whether we actually need molecularly imprinted polymers to be a general alternative to antibodies.
EN
Molecular imprinting of small organic compounds is now a standard procedure for preparation of tailor-designed affinity materials. Molecularly imprinted polymers (MIPs) have outstanding stability and can be prepared in a large quantity, therefore are useful replacements for biological receptors for a number of applications including product purification, analytical separation, chemical sensing and controlled delivery and biomineralization. Although preparation of MIPs, in particular using the non-covalent imprinting strategy, has become a routine practice in many research laboratories, new synthetic methods continued to be invented, which contribute to new MIPs with unprecedented functional performances. As the size of the template increases from small organic compounds to biomacromolecules to large virus particles and cells, the traditional methods of imprinting often fail to give useful MIP products. Another important aspect is the shift from organic solvents to water for MIPs designed for treatment or analysis of biological samples. The demand on water-compatibility and recognition of larger entities for MIPs call for new and efficient synthetic methods. This mini review will summarize the recent progress of molecular imprinting using particle-stabilized emulsion as a general synthetic platform to furnish the new MIPs with the desired functions.
EN
In this paper, the improvement over a novel format for selective solid-phase extraction based on a molecularly imprinted polymer (MIP) is described. A small amount of MIP has been synthesized within the superficial pores of commercial polyethylene (PE) frits and attached to its surface using benzophenone (BP), a photo-initiator capable to start the polymerization from the surface of the support material. Key properties affecting the obtainment of a proper polymeric layer, such as polymerization time and kind of cross-linker were optimized. Prepared composite material was applied to the SPE of TBZ in real samples extracts, showing an impressive clean-up ability. Calibrations showed good linearity in the concentration range of 0.05–5.00 μg g-1, referred to the original solid sample, and the regression coefficients obtained were greater than 0.998. The calculated detection limit was 0.01 μg g-1, low enough to satisfactory analysis of TBZ in real samples. Mean recoveries were about 70 % at different concentration levels with RSDs always ranged below 15% in all the cases.
EN
Molecular imprinting of nicotine and related carcinogenic chemicals in itaconic acid – ethylene glycol dimethacrylate copolymer is described. Molecularly imprinted polymers (MIPs) are made to contain binding sites capable of recognizing nicotine; thus the fingerprint of the nicotine created in the polymer allows it to serve as an ideal molecular recognition element. We demonstrate that the imprinted polymers show high selective binding affinity in biological buffers. This is a previously un-described initiative for molecular imprinting, since the binding occurs under conditions relevant to biological systems. Due to effect of molecular imprinting nanocavities with size 24±5 nm were formed and these nicotine receptor sites were distributed homogeneously in the nicotine imprinted polymer. The nicotine receptors showed highly selective to nicotine with Kd values as low as 10-5M, and the levels of selectivity similar to those of natural molecules - acetylcholine esterase (AChE). The recognition properties of the polymer receptor were analyzed using ultra-violet spectroscopy, computer simulations and adsorption assay. Importantly, the receptors were effective in wide pH range (6.8-8.2) while the natural nicotine receptors showed high binding only at pH 7.6. The high specificity and stability of artificial receptors rendered them promising alternatives to enzymes, antibodies, and other natural receptors useful in biomedical assays, sensors and drug development.
EN
The facile and controlled synthesis of narrowly dispersed molecularly imprinted polymer (MIP) microspheres with both photo- and thermo-responsive template binding properties in pure aqueous media is described. Narrowly dispersed "living" core polymer microspheres with surface-immobilized dithioester groups were firstly prepared via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization (RAFTPP). The polymer microspheres were then successively grafted with an azobenzene (azo)-containing MIP layer and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) brushes via surface-initiated RAFT polymerization to provide the desired product. The successful grafting of the azo-containing MIP layer and PNIPAAm brushes was confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and static contact angle experiments. The attachment of an azo-containing MIP layer onto the "living" core polymer beads with a narrow size distribution allows the direct generation of narrowly dispersed photoresponsive core-shell MIP microspheres. Moreover, the introduction of PNIPAAm brushes onto the core-shell MIP microspheres has been shown to significantly improve their surface hydrophilicity leading to pure water-compatibility. Additionally, this modification confers thermo-responsive template binding properties upon the microspheres.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.