Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Lorenz-Haken equations
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2014
|
vol. 12
|
issue 3
203-214
EN
We have applied harmonic expansion to derive an analytical solution for the Lorenz-Haken equations. This method is used to describe the regular and periodic self-pulsing regime of the single mode homogeneously broadened laser. These periodic solutions emerge when the ratio of the population decay rate ℘ is smaller than 0:11. We have also demonstrated the tendency of the Lorenz-Haken dissipative system to behave periodic for a characteristic pumping rate “2C P”[7], close to the second laser threshold “2C 2th ”(threshold of instability). When the pumping parameter “2C” increases, the laser undergoes a period doubling sequence. This cascade of period doubling leads towards chaos. We study this type of solutions and indicate the zone of the control parameters for which the system undergoes irregular pulsing solutions. We had previously applied this analytical procedure to derive the amplitude of the first, third and fifth order harmonics for the laser-field expansion [7, 17]. In this work, we extend this method in the aim of obtaining the higher harmonics. We show that this iterative method is indeed limited to the fifth order, and that above, the obtained analytical solution diverges from the numerical direct resolution of the equations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.