Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Impurity profiling
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the present study a reversed phase high performance liquid chromatography (RP-HPLC) method with diode array detector (DAD) at room temperature was used for obtaining impurity profiles of 20 drug products containing simvastatin as an active substance. Fourier-transform infrared spectroscopy (FT-IR) was carried out to obtain absorption spectra of samples. The partial least squares (PLS) model was built to predict the relative content of lovastatin, the main impurity of simvastatin, and sum of statin-like impurities. In order to build the PLS model, peak areas obtained from HPLC chromatograms were related to FT-IR spectra of drugs. The PLS model based on signal normal variate and orthogonal signal correction (SNV+OSC) transformed FT-IR spectra was able to predict the content of drug impurities in real samples with a good prediction ability (R2 > 0.95). [...]
EN
In this work attention is focused on impurity profile analysis in combination with infrared spectroscopy and chemometric methods. This approach is considered as an alternative to generally complex and time-consuming classic analytical techniques such as liquid chromatography. Various strategies for constructing descriptive models able to identify relations among drug impurity profiles hidden in multivariate chromatographic data sets are also presented and discussed. The hierarchical (cluster analysis) and non-hierarchical segmentation algorithms (k-means method) and principal component analysis are applied to gain an overview of the similarities and dissimilarities among impurity profiles of acetylsalicylic acid formulations. A tree regression algorithm based on infrared spectra is used to predict the relative content of impurities in the drug products investigated. Satisfactory predictive abilities of the models derived indicate the possibility of implementing them in the quality control of drug products. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.