Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Hydrogen peroxide
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A mesoporous graphite material micro-structured with palladium-platinum deposits (mixed in the ratio of 70:30% Pd:Pt) has been used as a cost-effective electrode material for designing an amperometric biosensor for xanthine. The here reported biosensor shows significantly improved operational parameters as compared to previously published results. At a constant applied potential of −0.05 V (vs. Ag/AgCl) it is distinguished with enhanced selectivity of the determination: at the working potential the current from the electrochemical transformation of various electrochemically active substances usually attending biological fluids (incl. uric acid, L-ascorbic acid, glutathione and paracetamol) has been eliminated. The effect of both the temperature and buffer composition on the analytical performance of the sensor has been investigated. Under optimal operational conditions (25°C, −0.05 V vs. Ag/AgCl, phosphate buffer, pH 8.4), the following have been defined for the biosensor: sensitivity 0.39 µA µM−1, strict linearity of the response up to xanthine concentration 70 µM, detection limit of 1.5 µM (S/N=3) and a response time of at most 60 s. [...]
EN
It was found that oximes undergo deoximation in the presence of the H2O2aq-HBraq system to form ketones and bromo ketones. This reaction provided the basis for the synthesis of dibromo ketones in yields varying from 40% to 94%. This method is environmentally friendly, sustainable, and easy to perform. The results of this investigation extend the potential of the use of oximes for the protection of carbonyl group, thus offering the ability to perform not only conventional deoximation but also the subsequent bromination of ketones. The reaction is easily scaled up and dibromo ketones can be prepared in gram amounts. [...]
EN
Kinetic study on the decomposition of Prussian Blue electrocatalytic layer during electrochemical reduction of hydrogen peroxide has been studied in relation to biosensor application of this electrocatalyst. The decomposition has been shown to proceed as a nearly exponential decay process and the corresponding first-order rate coefficients were determined. It has been shown that the decomposition proceeds about 10 times faster in pH 7.3 buffer solution as compared to pH 5.5 buffer. A linear dependence of the decomposition rate on the concentration of hydrogen peroxide has been found. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.