Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Heteronona- and heterodecanuclear
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This review classifies and analyses fifty heteronona- and heterodecanuclear Pt clusters of metal composition: Pt4Ru5, Pt3Ru6, Pt20sr PtRh8, PtAu8; Pt6M4, Pt5M5, Pt4M6, Pt3M2, Pt2M8, PtM9, Pt3Ru6M and PtAu8M. There are nine different heterometals: M = Ru, Au, Ag, Cu, Hg, Os, Rh, Ir and Fe, of which Ru and Au are the most frequent. The clusters crystallize mostly into two crystal classes, monoclinic (74%) and triclinic (18%), and their structures are complex. Three triangular layers of nine metal atoms arranged in the form of a face-shared bioctahedron are common in the series of heterononanuclear clusters. In the series of heterodecanuclear clusters distorted skeletal icosahedrons, where a central platinum atom is surrounded by nine metal atoms, and face (edge) shared (fused) bioctahedral cluster of the metal atoms are the most common. The most frequent ligands are CO and PPh3. The shortest metal-metal bond distances are: 2.540(4) Å (Pt-Fe), 2.580(2) Å (Ru-Ru), 2.584 Å (Pt-Pt) and 2.629(4) Å (Cu-Au). Several relationships between the structural parameters were found and are discussed. Some clusters contain two crystallographically independent molecules within the same crystal and are examples of distortion isomerism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.