Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Heparin
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Medicine
|
2010
|
vol. 5
|
issue 2
165-171
EN
The purpose of this study was to evaluate the effects of systemic and intra-arterial application of heparin by measuring tissue levels of inflammatory cytokines. Twenty-one adult male Wistar albino rats were divided into three groups (Group A, B and C). All the rats had undergone ligation of the right femoral artery with 4-0 silk suture to induce limb ischemia. Group A was the control group. In Group B, unfractionated heparin of 1500 U/kg/day was given through the tail vein for 10 days, the same dose was given to distal part of ligated right femoral artery for 10 days in Group C. On the 3rd, 5th, and 10th days, biopsies were taken from rectus femoris muscle on the ischemic extremities. Tumor necrosis factor-α, interleukin-1β, and vascular cell adhesion molecule levels in muscle tissue were measured by a standard enzyme-linked immunoabsorbent assay method. An increase in tumor necrosis factor-α level was found in all three groups throughout the duration of the experiment. The increase in Group C was statistically significant as compared with the other groups. The significant increases that occurred in tumor necrosis factor-α level as a result of intra-arterial application of heparin can be postulated to be one of the results of angiogenesis induced by the heparin in ischemic extremities. This might delay the formation of a necrosis in ischemic extremities, depending on the increased angiogenesis response by means of intra-arterial heparin application and may result in extended vitality of an extremity.
EN
One of the most important adverse drug reactions that physicians encounter is the life-threatening prothrombotic syndrome known as heparin-induced thrombocytopenia (HIT). In patients with a history of heparin-induced thrombocytopenia and coronary arterial disease, alternative anticoagulatory regimens are needed during cardiac surgery for prevention of thrombosis. Treatment options for such patients now generally include the use of alternative anticoagulants such as lepirudin, bivalirudin, argatroban or danaparoid. In this article, we present a case where heparin-induced thrombocytopenia was properly performed coronary arterial bypass grafting by using lepirudin. (This sentence is confusing)
Open Chemistry
|
2005
|
vol. 3
|
issue 4
803-829
EN
A concise method for a stereocontrolled synthesis of a set of selectively protected disaccharides is reported. Coupling of the donor 11 onto acceptors 23 and 24, promoted by trimethylsilyl triflate-N-iodosuccinimide (TMSOTf-NIS), generated the disaccharides 25 and 26. Under typical conditions, condensation of the fully protected donor 12 onto acceptors 23 and 24 produced the disaccharides 27 and 28. The building blocks 25–28 were prepared in moderate yields having exclusive β-stereoselectivity. A unique pattern of protecting groups distinguished clearly between positions to be sulfated and functional groups remaining as free hydroxyl groups. Acetyl and/or levulinoyl esters temporarily protected the positions to be sulfated, while benzyl ethers were used for permanent protection. The anomeric positions were protected as allyl ethers, whereas the 4′-positions were masked as p-methoxybenzyl (PMB) ethers. The orthogonality of the PMB and allyl groups can then be used for further elongation of the chain by recurrent deprotection and activation steps. The hydroxyl group, OH-6, of glucosamine moieties was protected as a TBDPS ether to avoid oxidation. A five-step deprotection/sulfonation sequence was applied to the disaccharide 27 to generate the corresponding sulfated [β-D-GlcUA-2-OSO3Na-(1→4)-β-D-Glc pNAc]-(1→O-Pro) 34.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.