Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Gouy-Chapman
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
An effective adsorption model was developed by S. Nir in 1978 for predicting adsorption to synthetic membranes and was also adapted by him afterwards to clay minerals. The main principles of the model are the solution of the electrostatic Gouy-Chapman equations while calculating the adsorbed amounts of the cations as the sum of those residing in the double-layer region and the cations that are chemically bound in a closed system. Thus, the equilibrium concentration in solution is influenced by the adsorption as the function of the amounts bound. The model was later developed and adapted for the adsorption of METAL cations, and, in most cases, the fit of calculated results to measured adsorbed amounts of cations was very good, after calibrating the model for the chemical tested, with only two adjustable parameters for each chemical. In the current work, we tested the applicability of this model for the adsorption of a monovalent and a divalent METAL cation by several soils, by considering the cation exchange capacities (CEC) and the specific surface areas (SSA) of the soils. For three out of four soils, a very good fit was obtained by using the required parameters for the calculations from previous studies of cation adsorption on clay minerals. The main advantage of the presented model over Langmuir and Freundlich adsorption isotherms is that no additional changes in the parameters were needed when the background concentration of salts in the suspensions was increased from 10 to 50 or 500 mM.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.