Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  FUSARIUM CULMORUM
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Previously, we have reported a T-DNA tagged mutant (TAG_009) of Arabidopsis thaliana exhibiting a significant sensitivity to biotic stresses. We have also cloned and analyzed the tagged gene At5g46050. Based on bioinformatic and molecular characterization, we proposed that At5g46050 is involved in the transport of peptides participating in plant defense against biotic stresses. To provide further evidence for supporting our proposal, this time we exposed this mutant to Fusarium culmorum, a potential fungal pathogen. Besides TAG_009 line, in our investigations we included two SALK insertion mutants (SALK_003119 and SALK_145209), two wild-type ecotypes (WT_C24 and WT_Col-0) and an additional T-DNA tagged mutant (TAG_197-6) of A. thaliana. We have found that the highest degree of leaf damage was exhibited by TAG_009 line (damage score 4.37), whereas the lowest was observed in WT_Col-0 ecotype (damage score 3.43). The highest rate of mortality after eight weeks of inoculation with F. culmorum was also observed in TAG_009 line (85.24%), while the lowest was in WT_Col-0 line (37.22%). We have also found that plants of SALK_145209 line, despite being infected with Fusarium, produced the highest number of leaves (average 14.17 leaves per plant), whereas the lowest number of leaves was produced by plants of TAG_197-6 line ( average 9.5 leaves per plant). Statistical analyses showed that the differences between the T-DNA tagged line TAG_009 and WT_Col-0 were significant, whereas in comparison with wild-type control plants WT_C24, they were insignificant. Based on these results, we can conclude that the gene we have tagged by using T-DNA-mediated in vivo gene fusion is indeed involved in the plant defense against Fusarium infection.
EN
Thirty doubled haploid (DH) lines of barley derived from F1 of a cross between the six-rowed cultivar Pomo and two-rowed cultivar Maresi were examined for susceptibility to Fusarium seedling blight (SB) and head blight (FHB), measured by mycotoxin (nivalenol) content of kernels. RAPD (random amplified polymorphic DNA) polymorphism was analysed by using 53 decamer primers. Amplification products (APs) were 200 bp up to 2000 bp in size on average 5.7 per primer and the total number of APs was 284, 51.06% of which were polymorphic. Only 32 APs differentiated the examined DH lines ? 19 APs for nivalenol content of kernels and 13 for seedling resistance. DH lines segregated with continuous distribution of resistance to FHB and SB. At the seedling stage all DH lines exhibited lower susceptibility than parental cultivars, but in the adult stage only two lines (MP 2 and MP 7) appeared to be more resistant to FHB, i.e. accumulated in kernels a lower amount of mycotoxin than cultivars Maresi and Pomo.
EN
Twelve Polish spring wheat cultivars and 18 spring wheat accessions from CIMMYT, Mexico, were examined for resistance to a highly pathogenic Fusarium culmorum strain KF846 and powdery mildew in 5-year field experiments. Resistant wheat cultivars (Sumai 3 and Frontana) served as controls. The mean percentage of Fusarium-damaged kernels (% FDK) for 5 years was lower in CIMMYT accessions (16.7%) than in Polish spring cultivars (28.3%). In all Polish spring cultivars, % FDK was higher than in the control cultivars Sumai 3 and Frontana (12?20%). The mean disease score (on a scale of 1?9) for powdery mildew (natural infection) for all examined cultivars and lines ranged from 0 to 7 and in the Polish spring cultivars was significantly lower (0?5). Cultivars Eta, Henika, Ismena, Jasna and Olimpia were found to be the least susceptible to powdery mildew in field experiments. The laboratory host-pathogen tests with Blumeria graminis f. sp. tritici isolates showed that only two cultivars were characterized by identical resistance patterns as the standard differential lines with documented resistance genes. Cultivar Alkora had the gene Pm3d, and Henika had Pm5. The gene Pm3d was identified in cultivars Jasna and Eta in combination with another unknown gene/genes. Cultivars Santa and Torka had the gene Pm5 in combination with another unknown gene/genes. Four cultivars: Banti, Ismena, Olimpia and Sigma, showed resistance to all mildew isolates employed in a laboratory test. The accession IPG-SW-14 was the least susceptible to both pathogens (F. culmorum and powdery mildew) in all 5 years of experiments. This line is the best candidate for deriving new cultivars with improved resistance to fungal diseases.
EN
Barley doubled haploids (DH) were examined for their susceptibility to Fusarium head blight caused by Fusarium culmorum. DH lines were derived from F1 Maresi (two-rowed) ? Pomo (six-rowed) hybrids by the 'H. bulbosum' method. Doubled haploids, parental cultivars and F1 and F2 hybrids were inoculated with Fusarium culmorum (W.G.Sm.) Sacc., isolate KF350 under field conditions. The kernel infection score, number of kernels per ear, kernel weight per ear, 1000-kernel weight, and kernel fractions were recorded in inoculated and control plants. Samples of kernels were analysed for presence of nivalenol and deoxynivalenol. In the inoculated plants a reduction of kernel number, kernel weight per ear, 1000-kernel weight and percentage of plump kernels was observed. Generally, inoculation caused a significant decrease in the kernel fraction > 2.5 mm, and increase in the fractions 2.5-2.2 and < 2.2 mm. This tendency was more visible in 2-rowed than in 6-rowed lines. The nivalenol content of inoculated doubled haploids ranged from 0.16 to 7.61 mg/kg, whereas their deoxynivalenol content ranged from 0.000 to 0.253 mg/kg. Significant relationships between the kernel infection score and nivalenol content, kernel yield per ear, 1000-kernel weight and kernel fraction > 2.5 mm were observed. Transgression effects were noted in some DH lines, in which the reduction of kernel characters was lower than in parental cultivars. Doubled haploids with a positive and negative transgression for nivalenol and deoxynivalenol content were also recorded.
EN
The genetic determination of variability of barley doubled haploid (DH) lines in regard of their susceptibility to Fusarium head blight caused by Fusarium culmorum was studied. The susceptibility was evaluated in a 3-year field experiment on the basis of reduction in yield traits and mycotoxin accumulation in infected kernels. The following traits were analysed in inoculated and control plants: kernel number and weight per ear, 1000-kernel weight, percentage of plump kernels (>2.5 mm), deoxynivalenol (DON) content and nivalenol (NIV) content of kernels. On the basis of the obtained data, heritability coefficient (ratio of genotypic to phenotypic variance) was assesed, and genetic parameters as well as the number of effective factors were estimated. Heritability coefficients calculated from two-way analysis of variance, i.e. regarding the influence of years and year ? genotype interaction, appeared to be exceptionally low and ranged from 5.2% for the reduction in plump kernels to 38.2% for the reduction in 1000-kernel weight. In the case of mycotoxin accumulation about 60% of the observed variability in NIV concentration and 30% in DON concentration resulted from genetic differences among lines. Additive effects of genes were important for all the analysed traits. Significant effects of dominance and dominance ? dominance were observed for 1000-kernel weight and percentage of plump kernels. Moreover, it was found that the observed variability in yield trait reduction resulted from the segregation of 5-6 effective factors, DON content from 4 factors, while NIV content from 5 factors.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.