Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  FLUOROCHROME DYE
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Thalamic and amygdaloid connections of three association auditory areas (AA1, AA2, AA3) of the superior temporal gyrus (STG) were investigated. In order to define the projections of the particular areas, injections of fluorescent tracers were made in three monkeys. Distribution of labeling indicates that area AA1 differs from areas AA2 and AA3 in patterns of both thalamo-cortical and amygdalo-cortical connections. Area AA1 receives its predominant inputs from the ventral and dorsal nuclei of the medial geniculate body (MGB). The amygdaloid projection to the area AA1 originates from the basal nuclei, whereas input from the lateral nucleus was not found. The characteristic thalamic projections to areas AA2 and AA3 originate from the dorsal MGB nucleus and the polymodal nuclei of the posterior thalamus. The density of projections from the dorsal nucleus gradually decreases from area AA1 to area AA3 while projections from the Plm, Sg and Lim nuclei increase in the same direction. Areas AA2 and AA3 are the source of strong connections with the lateral nucleus of amygdala, which density increases progressively when injections shift from area AA2 to AA3. The basal and accessory basal nuclei are the source of a less significant amygdalofugal projections to both cortical areas. Thus, our experimental data indicate that influence of the polymodal thalamic nuclei increases substantially in the direction of the higher order association areas. The strong relation of the same cortical areas with the lateral amygdaloid nucleus might suggest that areas AA2 and AA3, in addition to auditory input are the site of transfer of complex sensory information to the amygdala.
EN
Reciprocal connections of amygdaloid nuclei with the temporal neocortex in the dog were investigated. Injections of fluorescent tracers and BDA into particular temporal areas were made in eleven dogs. The topographical arrangement of connections and variations in their density differentiate the temporal neocortex in the dog into a few regions. Among them, the cortex involving the anterior part of the ectosylvian gyrus did not send any amygdalopetal projection. The middle ectosylvian, dorsal zone of the posterior ectosylvian and the anterior part of the Sylvian gyrus were weakly connected with the amygdala. The cortical region involving the ventral zone of the posterior ectosylvian and composite posterior areas, as well as posterior Sylvian gyrus, was characterized by profuse connections with the amygdaloid complex. Corticoamygdaloid connections originate in the wide cortical area of the auditory cortex of the middle and dorsal part of the posterior ectosylvian gyrus as well as in the auditory association cortex located in the ventral ectosylvian, composite posterior and posterior Sylvian gyri. The connections showed a dorso ventral gradient of increasing density, in the direction of association fields. The most substantial projection taking rise from the ectosylvian posterior and posterior composite gyri terminated preferentially in the pericapsular sector of the lateral amygdaloid nucleus and, to a lesser degree, in its medial sector. Terminals of connections originating in the Sylvian gyrus occupied preferentially the intermediate part of the lateral nucleus, slightly more medially than that from the ectosylvian and posterior composite areas. Additionally, axonal terminals derived from the composite posterior and Sylvian posterior areas were observed in the basal parvocellular and magnocellular nuclei.Neocortical projections were reciprocated by amygdalofugal connections with two exceptions: the basal magnocellular nucleus was distinguished by a substantial amygdalofugal projection to the temporal neocortex focused on the dorsal Sylvian gyrus, and the central nucleus of the amygdala, in contrast, received an exclusively corticofugal projection.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.