Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Dissolution
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Zinc is a vital and beneficial trace element found in the human body. Though found in small proportions, zinc performs a variety of functions in relation to the immune system, cell division, fertility and the body growth and maintenance. In particular, zinc is proven to be a necessary element for the formation, mineralization, development and maintenance of healthy bones. Considering this attractive attributes of zinc, recent research has widely focused on using zinc along with silicate-based bioactive glasses for bone tissue engineering applications. This paper reviews relevant literature discussing the significance of zinc in the human body, along with its ability to enhance antibacterial effects, bioactivity and distinct physical, structural and mechanical properties of bioactive glasses. In this context, even if the present analysis is not meant to be exhaustive and only representative studies are discussed, literature results confirm that it is essential to understand the properties of zinc-containing bioactive glasses with respect to their in vitro biological behavior, possible cytotoxic effects and degradation characteristics to be able to effectively apply these glasses in bone regeneration strategies. Topics attracting increasing research efforts in this field are elaborated in detail in this review, including a summary of the structural, physical, biological and mechanical properties of zinc-containing bioactive glasses. This paper also presents an overview of the various applications in which zinc-containing bioactive glasses are considered for use as bone tissue scaffolds, bone filling granules, bioactive coatings and bone cements, and advances and remaining challenges are highlighted.
Open Chemistry
|
2010
|
vol. 8
|
issue 4
953-962
EN
The purpose of this study was to explore the utility of hydroxypropyl-β-cyclodextrin (HP-β-CD) systems in forming inclusion complexes with the anti-rheumatic or anti-arthritic drug, etodolac (EDC), in order to overcome the limitation of its poor aqueous solubility. This inclusion system achieved high solubility for the hydrophobic molecule. The physical and chemical properties of each inclusion compound were investigated. Complexes of EDC with HP-β-CD were obtained using the kneading and co-evaporation techniques. Solid state characterization of the products was carried out using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Studies in the solution state were performed using UV-Vis spectrophotometry and 1H-NMR spectroscopy. Phase solubility profiles with HP-β-CD employed was found to be AL type. Stability constants (Kc) from the phase solubility diagrams were calculated indicating the formation of 1:1 inclusion complex. Stability studies in the solid state and in liquid state were performed; the possible degradation by RP-HPLC was monitored. The dissolution studies revealed that EDC dissolution rate was improved by the formation of inclusion complexes. [...]
3
Content available remote

Oxidation of UO2(s) in aqueous solution

100%
Open Chemistry
|
2008
|
vol. 6
|
issue 1
1-14
EN
In this review the kinetics and mechanism of oxidative dissolution of UO2(s), mainly under conditions of relevance for the safety assessment of a deep geological repository for spent nuclear fuel, are discussed. Rate constants for the elementary processes involved (oxidation of UO2 and dissolution of oxidized UO2) are used to calculate the rates of oxidative UO2(s) dissolution under various conditions (type of oxidant, oxidant concentration and HCO3−/CO32− concentration) for which experimental data are also available. The calculated rates are compared to the corresponding experimental values under the assumption that the experimental numbers reflect the steady-state conditions of the system. The agreement between the calculated rates and the corresponding experimental ones is very good, in particular for the higher rates. In general, the calculated rates are somewhat higher than the experimental numbers. This can be due partly to the use of initial concentrations rather than steady-state concentrations in the calculations. The kinetic data are also used to quantitatively discuss the dynamics of spent nuclear fuel dissolution under deep geological repository conditions. [...]
EN
Conversion of liquid and semisolid lipids into free flowing powders is an advantageous technique, as the carriers display high surface area, strong adsorption capacity, ease of processing, and ability to generate lipid loaded free flowing powders which can be converted to solid dosage forms like tablets and capsules. A combination of density, adsorption capacity and desorption is found to be of importance in the selection of the right adsorbent. Adsorbents like magnesium aluminium silicates (MAS), granulated fumed silica (GFS) and mesoporous silica gel (MSG) were characterized by flow property measurements, particle size, scanning electron microscopy (SEM) and pore structure by mercury (Hg) intrusion study. SEM results reveal adsorbent morphology, whereas an intrusion-extrusion study reveal pore size distributions. Tablets and capsules of oil loaded adsorbents were prepared by conventional methods. Oil loaded adsorbents were evaluated for the ability to convert oil into powder, easy of processing into tablets and capsules, and release of the loaded oil (Vitamin E) or active (Glyburide). All adsorbents possess good flow property while MSG has higher density than GFS and MAS. This helps to deliver maximum active per unit volume. A wider pore size distribution of MAS was observed in comparison to MSG and GFS. MAS exhibited poor oil release from powder and its formulations, whereas GFS demonstrated closely similar release to MSG. Maximum 70% oil loaded MSG can be delivered in tablet dosage form andMSG can deliver the highest amount in limited volume capsules due to its high density. Hence, lower density and poor oil release from MAS limit its applications in solid oral drug delivery,while both MSG and GFS proved to be suitable.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.