Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Debye temperature
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work, we propose a new approach to accurate calculation of heat capacities at constant volume and pressure of TiO₂ anatase and rutile. The evaluation model is based on the Einstein-Debye approximation which has been extensively used in solid state physics. The application of proposed approach to anatase and rutile titanium dioxide computations results is shown to be well numerically satisfactory. This approach is valid in wide temperature ranges and can be suggested for accurate evaluation of thermal properties of solids. The calculation results are in well agreement with the literature values reported by other studies.
2
88%
EN
Elastic properties of (PbySn1−y )2P2S6 solid solutions were studied using Brillouin scattering technique. Different scattering geometries were used for sound velocities determination that make it possible to find all components of the stiffness tensor. The concentration dependencies of volume compressibility, the Grüneisen parameter and Debye temperature were investigated. The results obtained were used to analyze chemical bonding with substitution of tin by lead at room temperature in the crystals under consideration.
EN
The structural and elastic properties of NbN₂ at high pressures were investigated through the first-principles calculation. Results indicate that NbN₂ is a potential hard material. NbN₂ meets mechanical stability criteria and possesses ductility within the pressure of 100 GPa. The elastic anisotropy under high pressure was achieved by the elastic anisotropy factors, which reduce with increasing pressure. Using the quasi-harmonic Debye model, we also investigated the thermodynamic properties of NbN₂.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.