Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  DNA microarray
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Detection of mutations in families with a hereditary predisposition to colon cancer gives an opportunity to precisely define the high-risk group. 36 patients operated on for colon cancer, with familiar prevalence of this malignancy, were investigated using the DNA microarrays method with the potential detection of 170 mutations in MLH1, MSH2, MSH6, CHEK2, and NOD2 genes. In microarrays analysis of DNA in 9 patients (25% of the investigated group), 6 different mutations were found. The effectiveness of genetic screening using the microarray method is comparable to the effectiveness of other, much more expensive and time-consuming methods.
|
|
vol. 51
|
issue 1
1-8
EN
The DNA microarray technology delivers an experimental tool that allows surveying expression of genetic information on a genome-wide scale at the level of single genes - for the new field termed functional genomics. Gene expression profiling - the primary application of DNA microarrays technology - generates monumental amounts of information concerning the functioning of genes, cells and organisms. However, the expression of genetic information is regulated by a number of factors that cannot be directly targeted by standard gene expression profiling. The genetic material of eukaryotic cells is packed into chromatin which provides the compaction and organization of DNA for replication, repair and recombination processes, and is the major epigenetic factor determining the expression of genetic information. Genomic DNA can be methylated and this modification modulates interactions with proteins which change the functional status of genes. Both chromatin structure and transcriptional activity are affected by the processes of replication, recombination and repair. Modified DNA microarray technology could be applied to genome-wide study of epigenetic factors and processes that modulate the expression of genetic information. Attempts to use DNA microarrays in studies of chromatin packing state, chromatin/DNA-binding protein distribution and DNA methylation pattern on a genome-wide scale are briefly reviewed in this paper.
|
2008
|
vol. 55
|
issue 1
161-174
EN
DNA microarray technology was applied to gain insight into the role of the redox state of PQ pool as a retrograde factor mediating differential expression of Arabidopsis nuclear genes during the acclimation to changing irradiance. DNA microarray chips containing probes corresponding to 24 000 Arabidopsis nuclear genes were screened with cRNA samples prepared from leaves of plants exposed for 5 h to low irradiance (control) vs. medium, high and excessive irradiances (MI, HI and EI, respectively). Six hundred and sixty three genes were differentially expressed as a result of an exposure to at least one elevated irradiance. Among 663 differentially expressed genes a total of 50 were reverted by DCMU - 24 ones modulated at medium irradiance, 32 ones modulated at high irradiance and a single one modulated at excessive irradiance. We postulate that their expression is regulated by redox state of plastoquinone (PQ) pool. Thus the PQ-mediated redox regulation of expression of Arabidopsis nuclear genes is probably limited to the irradiance window representing non-stressing conditions. We found that the promoter regions of the PQ-regulated genes contained conserved elements, suggesting transcriptional control by a shared set of trans-acting factors which participate in signal transduction from the redox state of the PQ pool.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.