Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Chemical activation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A method for obtaining carbonaceous adsorbents from pine cones by chemical activation with NaOH is described. Activated carbons were obtained by two methods of activation (physical mixing and impregnation) and two variants of thermal treatment. It has been shown that pine cones can be successfully used as cheap precursor of carbonaceous adsorbents of well-developed surface area, large pore volume and good sorption properties. All activated carbon samples obtained show strongly microporous structure and surface of acidic character. The best physicochemical properties and greatest sorption capacity towards iodine were found for the carbon samples obtained by physical mixing of the precursor with the activating agent and then subjected to thermal activation at 600°C.
EN
Two series of activated carbon have been prepared by chemical activation of Amygdalus Scoparia shell with phosphoric acid or zinc chloride for the removal of Pb(II) ions from aqueous solutions. Several methods were employed to characterize the active carbon produced. The surface area was calculated using the standard Brunauer-Emmet-Teller method. The microstructures of the resultant activated carbon were observed by scanning electron microscopy. The chemical composition of the surface resultant activated carbon was determined by Fourier transform infrared spectroscopy. In the batch tests, the effect of pH, initial concentration, and contact time on the adsorption were studied. The data were fitted with Langmuir and Freundlich equations to describe the equilibrium isotherms. The maximum adsorption capacity of Pb(II) on the resultant activated carbon was 36.63 mg g−1 with H3PO4 and 28.74 mg g−1 with ZnCl2. To regenerate the spent adsorbents, desorption experiments were performed using 0.25 mol L−1 HCl. Here we propose that the activated carbon produced from Amygdalus Scoparia shell is an alternative low-cost adsorbent for Pb(II) adsorption.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.