Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  CELL MIGRATION
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Treatment of 10T1/2 cells with promoting phorbol ester drasticly enhanced migration studied fibroblasts in a serum-supplemented medium.The same cells when exposed to ionomycin or TPA in a serum-free medium did not show any migration.The addition of 1% of serum induced spontaneous and TPA stimulated migration.Also EGF and PDGE separatly or together induced the migration of 10T1/2 cells.Parallel studies of protein kinase C documented low enzymatic activity after treatment with TPA, whereas transcripts of PKC were shown independently of TPA treatment.
EN
The escape of malignant cells from primary tumour and their active migration to the surrounding tissues are among the most important steps in the metastatic process. During migration, tumour cells interact with neighbouring neoplastic and normal cells and such interactions may affect their motile activity. We investigated the effect of extracellular calcium ions on migration of mouse melanoma B16 cells stimulated by homotypic cell-to-cell contacts. It was found that the decreasing of extracellular Ca2+ influx into B16 cells by lowering Ca2+ concentration in culture medium, or by the application of 0.5 mM La3+ (non-selective inorganic Ca2+ channels blocker), reduced the contact-mediated acceleration of migration of melanoma cells but only slightly affected the basal motile activity of non-stimulated single, separated cells moving without contacts with neighbouring ones in sparse culture. Since it was suggested that contact-mediated acceleration of migration of melanoma B16 cells may be controlled by mechanosensitive and/or voltage-gated ion channels, the presented data support the concept that these channels may affect cell migration by regulation of extracellular Ca2+ influx into stimulated cell.
EN
Objective: Epithelial wound repair assures the recovery of the epithelial barrier after wounding. During wound healing epithelial cells migrate to cover the wound surface. For healing of skin wounds the skin keratinocytes can be replaced by oral mucosa epithelial cells grown in vitro. The presented experiments were carried out in order to compare the proliferation, morphology, and migration between human keratinocytes isolated from human skin and oral mucosa. Materials and methods: Human epidermal and oral mucosa keratinocytes from primary culture were used in all experiments. Cell motility and shape were determined using computer-aided methods. Results and conclusions: It was demonstrated that although both cell types exhibit the same typical epithelial morphology, oral mucosa keratinocytes locomote significantly faster than skin keratinocytes. They also differ in proliferation activity. Oral mucosa keratinocytes exhibited faster growth and different actin cytoskeleton organisation than skin keratinocytes under in vitro conditions. Autologous oral mucosa keratinocytes may be expanded in vitro and used for skin wound healing in vivo.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.