Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  CELL DEATH
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We investigated the rate of cell proliferation and death in the retina of the Monodelphis opossum during its postnatal development and the influence of early monocular enucleation on these processes. Our results show that in the opossum, as in other marsupials, the peak of the retinal cells divisions occurs postnatally and that generation of retinal cells continues till the time of eye opening (P34), except of the marginal rim, where it continued till P60. Ganglion and amacrine cells are generated between postnatal days (P) P4 and P9, while bipolar cells and photoreceptors are generated simultaneously between P14 and P25. The peak of ganglion cell death as detected by the TUNEL method occurs around P14?19 in the center of retina. The second peak of apoptosis appears in the inner nuclear layer (INL) at P19?25. Gliogenesis takes place between P25 and P34. We also found that monocular enucleation performed during the early period of retinal development (P0?P7) did not influence proliferation, developmental apoptosis or other developmental processes in the retina of the remaining eye.
EN
Recognition of avirulent pathogens by plants activates defense system, cell death and the general broad-spectrum resistance called systemic acquired resistance - SAR. Several components involved in signaling resistance have recently been identified. Resistance gene mediated responses have been classified according to requirement of NDR1 or EDS1 gene. This classification correlates with R-gene structure. Salicylic acid plays central role in SAR. CPR and NPR1 genes function upstream and downstream of salicylic acid, respectively. Recent studies have demonstrated importance of the cell death in SAR. Novel defence signaling pathways that are independent on salicylic acid have been characterized.
EN
determined the sensitivity of neurons and neuroblastoma cells on apoptosis and necrosis induction upon quercetin treatment. No expression of Hsp72 was observed in neurons, which were more sensitive to cell death upon quercetin treatment than neuroblastoma cells, where Hsp72 expression was observed. Reduction of Hsp72 gene expression in neuroblastoma cells by antisense oligonucleotides made them more sensitive to pro-apoptotic action of quercetin. Moreover, the flavonoid decreased Hsp27, procaspase-3, MRP and PKB expression in neuroblastoma cells and in neurons. Nuclear localization of mainly cytoplasmic Hsp27 was observed in neuroblastoma cells after treatment with high quercetin concentrations, while in neurons, the protein was present in nuclei both in control and quercetin treated cells. Our results suggest that quercetin induce apoptosis more effectively in cells with low level of Hsp 72 expression. Higher sensitivity of neurons for cell death after treatment with high quercetin concentrations in comparison to neuroblastoma cell line should also be taken into consideration in further studies on using studied flavonoid as therapeutic agent.
EN
CREB activation and CREB-dependent signaling pathways are crucial for neuronal survival. The term ICER (inducible cAMP early repressor) refers to four protein isoforms that are all endogenous, inducible antagonists of CREB. Jaworski and others (2003) have previously shown that one of those isoforms, ICER II, is highly expressed in apoptotic neurons in vitro and its overexpression evokes neuronal death. In this study we investigated the role of all four ICER isoforms in cortical neuronal culture, comparing their expression level in serum-deprived/MK-801-treated neurons and their pro-apoptotic properties towards transfected cortical neurons. We have found that all four isoforms are induced upon pro-apoptotic treatment, and also that each of them separately evokes neuronal cell death following cortical culture transfection with the genes. The most efficiently induced, as well as the most effective in evoking neuronal cell death, were both ICER Igamma and IIgamma isoforms.
EN
This physiological cell death, also known as programmed cell death, takes place during the entire growth period of an organism. In general, somatic cell apoptosis can be induced through extrinsic mechanisms acting at the plasma membrane, mitochondrial or nuclear levels. Recent studies have demonstrated that apoptosis is an underlying mechanism of germ cell death during normal spermatogenesis and that it is a major mechanism in regulating spermatogenesis of various mammalian species. While apoptosis in somatic cells and in (testicular) spermatocytes and spermatids is well established, the presence and significance of apoptosis in ejaculated animals sperm is still unresolved.
EN
Percutaneous coronary intervention has become the most common and widely implemented method of heart revascularization. However, the development of restenosis remains the major limitation of this method. Photodynamic therapy (PDT) recently emerged as a new and promising method for the prevention of arterial restenosis. Here the efficacy of chlorin e6 in PDT was investigated in vitro using human vascular smooth muscle cells (TG/HA-VSMCs) as one of the cell types crucial in the development of restenosis. PDT-induced cell death was studied on many levels, including annexin V staining, measurement of the generation reactive oxygen species (ROS) and caspase-3 activity, and assessment of changes in mitochondrial membrane potential and fragmentation of DNA. Photosensitization of TG/HA-VSMCs with a 170 M of chlorin e6 and subsequent illumination with the light of a 672-nm diode laser (2 J/cm2) resulted in the generation of ROS, a decrease in cell membrane polarization, caspase-3 activation, as well as DNA fragmentation. Interestingly, the latter two apoptotic events could not be observed in photosensitized and illuminated NIH3T3 fibroblasts, suggesting different outcomes of the model of PDT in various types of cells. The results obtained with human VSMCs show that chlorin e6 may be useful in the PDT of aerial restenosis, but its efficacy still needs to be established in an animal model.
EN
Caspases are crucial mediators of apoptosis, a form of physiological cell death. Their activation is carefully controlled by a philogenetically conserved death program, which is indispensable for the homeostasis and development of higher organisms. Dysregulation of apoptosis contributes to the pathogenesis of many human diseases. As effectors of the apoptotic machinery, caspases are considered potential therapeutic targets. In vitro studies have demonstrated the requirement of caspases activity for both the triggering phase as well as the execution of apoptosis, thus providing a molecular base for the fine-tuning of this process by pharmacological agents. The precise roles of the individual caspases in vivo and their functional relation to each other have been best demonstrated in genetically modified animals. The generation of single caspase-deficient mice have confirmed most of the data obtained in vitro and exposed some new aspects previously undetected in the cell culture system. Interestingly, inactivation of many caspases revealed not only their expected participation in apoptotic events as well as in the maturation of cytokine, but also provided hints about the role of at least some caspases in cell differentation and stimulatory repsonses. In this review we will discuss what these studies have unveiled about the role of individual caspases in development, apoptosis, and inflammation, with particular focus on their role beyond the apoptotic process.
EN
The efficiency of somatic cell nuclear transfer (SCNT) technology in mammalian species remains unsatisfactory. One of the main causes of low developmental capability of pre- and peri-implanted somatic cell cloned embryos is the high occurrence of apoptotic cell death, which is prompted by incorrect calcium signaling. The latter is accompanied by upregulation of the members from the Bcl-2 protein family in the blastomeres of SCNT embryos derived from the reconstructed oocytes exposed to artificial activating factors that induce the phenomenon of Ca2+ ion excitotoxicity. Overexpression of antiapoptotic proteins from the Bcl-2 family plays a fundamental role in suppression of different pathways involving intracellular transduction of programmed cell death signal in the somatic cell cloned embryos. Enhancement of Bcl-2 synthesis in the cytoplasm as well as on the outer/cytoplasmic surface of cisterns and tubules of granular endoplasmic reticulum (ERg) and thereby increase in its concentration and activity in the membranes of ER and mitochondria prevents the redistribution of free calcium cations from ER to mitochondria. The purpose of this article is to provide an overview of the current knowledge on molecular aspects of controlling calcium intracellular homeostasis in mammalian SCNT embryos, in which apoptotic cell death was stimulated by an improper activation of reconstituted oocytes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.