Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  BIOPRODUCT
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Pharmaceutical biotechnology is 60 years old. Its development one can divide into three essential periods. Two of them have proceeded in past century. The first period started during the Second Warld War with the industrial production of penicillin and was microbiology-based (microbial metabolites as drugs). The second one was genetic engineering-based and started in 1982, when human insulin synthesized in recombinant bacteria was introduced by pharmaceutical industry to health care. The third period began in 2001 with the first descriptions of the human genome, and is genome-based (also proteome-based). Molecular biology with its new areas genomics, farmacogenomics and proteomics, together with bioinformatics and other sophfisticated tools developed at the end of XX century and introduced (the pharmaceutical and medical biotechnology of the XXI century) very new ideas and new approaches to drug discovery and designin. Pharmaceutical biotechnology (as well as pharmaceutical industry as a whole and world biotechnology as a whole) is entering upon the third phase of its development, a very integrated and globalized one.
EN
The three antiviral vaccines discovered in the 18th century (smallpox), 19th century (rabies), and 20th century (polio) share a common feature: none would ever be licensed today for human vaccination. Yet Jenner's smallpox vaccine led to the eradication of smallpox, Pasteur's rabies vaccine represented the first successful post-exposure treatment of people bitten by rabid animals, and polio vaccine administered since its discovery in 1950 is leading to the eradication of polio (in the years 2004-2005) from the earth. However, in the case of rabies, efforts at complete eradication are unrealistic, despite the availability of a very effective vaccine, since rabies, unlike smallpox and polio, is not limited to humans and can infect all domestic and wild mammalian species. Rabies is probably the oldest known infectious disease, yet knowledge of the virus and the disease is far from complete. For instance, the appearance of 24 cases of 'cryptic' rabies in the USA, i.e. cases not associated with any bite or scratch, with an incubation period in humans extending 6-8 years, is a puzzling phenomenon that cannot be readily explained. On the other hand, rabies is one of the few strictly neuronal infections and, as such, is an excellent model for the study of neurotropic virus distribution in the brain. Apoptosis induced by a rabies strain expressing high levels of glycoprotein spreads much more slowly through brain tissue than that induced by strains producing lower glycoprotein levels. Attenuated rabies virus constructed to express twice the normal glycoprotein levels is also an excellent antigen for induction of immune responses in the host. Foreign antigens using this vector may also produce highly immunogenic vaccines. Global Approach to Immunization. Those monitoring the spread of AIDS in many parts of the world know that cost of treatment is one of the major problems in combating the disease. Vaccines against HIV face the same problem. In general, the price of vaccines and sera is exorbitant for the afflicted population in developing countries. In addition, the dearth of syringes, the unavailability of nurses and doctors to administer multiple vaccine injections, and other factors in these countries require a drastic change in current vaccine production approaches. About 12 years ago, plants became vehicles to produce biomedical reagents. Plants can be exposed directly to a construct containing a foreign gene and Agrobacterium to create a transgenic plant that, over several generations, produces the desired product. Alternatively, plants infected with a plant virus (e.g. alfalfa mosaic virus) fused with a foreign gene can propagate the foreign antigen as the virus multiplies. Extraction of the plant virus followed by purification provides the desired biomedical product. Our use of either of these systems has led to the creation of plants producing vaccines, sera, hormones, and other biological reagents. In two clinical trials at the Institute of Bioorganic Chemistry of the Polish Academy of Sciences in Poznan, volunteers who ingested lettuce expressing hepatitis B vaccine showed hepatitis B antibodies in their sera. In another trial carried out at the Biotechnology Foundation Laboratories in Philadelphia, volunteers ingesting a spinach-rabies vaccine showed an immunological priming effect, since only one injection of commercially available rabies vaccine significantly raised the level of rabies-specific antibodies. Vaccines against HIV gp120 and Tat have been produced in spinach, and a construct of gp120 with the CD4 receptor is now being adapted to this plant. Two types of antibodies against rabies and against colorectal cancer are being produced in tobacco and in lettuce. The suboptimal quality of the currently available anthrax vaccine prompted our efforts to produce the anthrax Protective Antigen (PA)in tobacco and lettuce. Quite clearly, plants will play a prominent role in producing a variety of biomedical reagents in the future.
EN
The development of techniques of DNA recombination in vitro is a basis for the discusion of biohazard and biosafety in laboratory experiments, technological processes and for the environment. After twenty years of experience in this field no hazardous incident was published and therefore we claim that genetic engineering is safe.However, there are different degrees of biohazard in biotechnology depending on the biological agents used, and therefore safety precautions for handling them were developed. The majority of microorganisms used in biotechnology, especially for food production, is harmless.For laboratory work with pathogenes or for their technological applications (e.g. in vaccine production) the techniques of containment are developed and introduced into the praxis. In some cases new technologies eliminate the biorisk in vaccine production: safe genetically engineered instead of pathogenes are utilized.It is necessary to state, that the biosafety problem is discussed mainly from the point of view of human needs.However, the most important question is genetic engineering and biotechnology applications for the military sector.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.