Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Autoxidation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Multivariate curve resolution - alternating least squares (MCR-ALS) has been applied to data collected from UV/Vis spectrophotometric analysis of the autoxidation process of pyrogallol in weakly alkaline aqueous solutions. The MCR-ALS analysis was able to explain the autoxidation kinetics of pyrogallol at pH 7.4 and 8.0, allowing deduction of the pure spectra and concentration changes of different species present throughout the entire process. The autoxidation process at pH 7.4 was found to follow a first-order reaction model, with formation of purpurogallin as the sole and terminal product. Changing the pH to 8.0 not only accelerated autoxidation of pyrogallol to purpurogallin but also introduced a further autoxidation of purpurogallin. At pH 8.0 the process fits a model of two consecutive first-order reactions. The first step is formation of purpurogallin, which reacts in a further autoxidation to form a yellow colored substance, most probably purpurogallin polymer. [...]
Open Chemistry
|
2012
|
vol. 10
|
issue 1
187-193
EN
Peroxynitrite (ONOOH/ONOO-) which is formed in vivo under oxidative stress is a strong oxidizing and nitrating agent. It has been reported that several flavonoids, including quercetin, inhibit the peroxynitrite-induced oxidation and/or nitration of several molecules tested; however, the mechanism of their protective action against peroxynitrite is not univocally resolved. The kinetics of the reaction of quercetin with peroxynitrite was studied by stopped-flow as well as by conventional spectrophotometry under acidic, neutral and alkaline pH. The obtained results show that the protective mechanism of quercetin against peroxynitrite toxicity cannot be explained by direct scavenging of peroxynitrite. We propose that quercetin acts via scavenging intermediate radical products of peroxynitrite decomposition (it is an excellent scavenger of ·NO2) and/or via reduction of target radicals formed in the reaction with peroxynitrite.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.