Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Activation energy
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In our work, we present a method for estimation of the diffusion and reaction rates of synthesis at high temperatures using limited information from laboratory experiments, such as synthesis time and dimensions of reactants. Synthesis by sol-gel and solid-state reactions is considered. The inverse modeling problem is solved for one- and two-dimensional models. Explicit formulas for the diffusion coefficient and reaction rate as functions of temperature are obtained. The activation energies are calculated, and the lower bounds of diffusion and reaction rates are estimated, thus obtaining conditions for occurrence of synthesis. [...]
Open Chemistry
|
2014
|
vol. 12
|
issue 2
213-219
EN
The results of the kinetic measurements of Bi(III) electroreduction on a mercury electrode in 1–8 mol dm−3 chlorate (VII) solutions and in the presence of cystine demonstrate a dependence of the process on the temperature. The applied electrochemical techniques (DC polarography, cyclic and SWV voltammetry) allowed for the determination of the kinetic and thermodynamic parameters and their correlation with water activity. The catalytic activity of cystine was confirmed by the decrease in overall enthalpies of activation. The changes in the values of ΔH ≠ and ΔS 0 for Bi(III) electroreduction in the presence of cystine with the increase of chlorate (VII) concentration showed that the mechanism is different in solutions with low water activity as compared to those with high water activity. Probably it is connected with a different structure of the activated complexes (Bi-Hg(SR)2), mediating electron transfer.
EN
The hydrogenation properties of magnesium hydride mechanically milled with iron fluorides (FeF2 and FeF3), were investigated by Temperature Programmed Desorption (TPD) and volumetric methods using a Sieverts-type apparatus, as prepared upon dehydrogenation and finally upon subsequent hydrogenation. The activation energy of hydrogen desorption (Ea), calculated from the Kissinger formula using TPD measurements obtained with different heating rates, showed significant decreases of Ea in comparison to that of milled MgH2 without any dopants. Moreover, the influence of these metal fluorides on the thermodynamics of the decomposition process was also examined. In the case of the FeF2 dopant, rehydrogenation following desorption caused the complete decomposition of the iron fluoride to BCC iron and the formation of a predominant MgH2 phase. In contrast to FeF2, the addition of FeF3 led to the formation of β-MgH2 as a major phase coexisting with Mg2FeH6 and MgF2 compounds. The presence of pure Fe in the MgH2+FeF2 composite, as opposed to MgH2+FeF3 containing Mg2FeH6 and MgF2, did not cause any significant influence on the sorption properties of MgH2. Moreover, the original material doped with FeF3 predominantly showed iron in the Mg2FeH6 compound, while the FeF2 dopant iron mostly showed the nearly pure BCC metallic phase [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.