Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Acathamoeba castellanii
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 51
|
issue 4
953-962
EN
Benzodiazepine binding sites were studied in mitochondria of unicellular eukaryotes, the amoeba Acathamoeba castellanii and the yeast Saccharomyces cerevisiae, and also in rat liver mitochondria as a control. For that purpose we applied Ro5-4864, a well-known ligand of the mitochondrial benzodiazepine receptor (MBR) present in mammalian mitochondria. The levels of specific [3H]Ro5-4864 binding, the dissociation constant (KD) and the number of [3H]Ro5-4864 binding sites (Bmax) determined for fractions of the studied mitochondria indicate the presence of specific [3H]Ro5-4864 binding sites in the outer membrane of yeast and amoeba mitochondria as well as in yeast mitoplasts. Thus, A. castellanii and S. cerevisiae mitochondria, like rat liver mitochondria, contain proteins able to bind specifically [3H]Ro5-4864. Labeling of amoeba, yeast and rat liver mitochondria with [3H]Ro5-4864 revealed proteins identified as the voltage dependent anion selective channel (VDAC) in the outer membrane and adenine nucleotide translocase (ANT) in the inner membrane. Therefore, the specific MBR ligand binding is not confined only to mammalian mitochondria and is more widespread within the eukaryotic world. However, it can not be excluded that MBR ligand binding sites are exploited efficiently only by higher multicellular eukaryotes. Nevertheless, the MBR ligand binding sites in mitochondria of lower eukaryotes can be applied as useful models in studies on mammalian MBR.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.