Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  AUTORADIOGRAPHY
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
During the early stages of myogenesis in X. laevis, the primary myoblasts (of mesodermal origin) differentiate simultaneously, in each myotome, into mononucleate myotubes. At later stages mesenchymal cells appear in intermyotomal fissures and then in the myotomes between myotubes and contribute to the formation of syncytial muscle fibres. The pathway of mesenchymals cell during myogenesis was described in X. laevis by monitoring the incorporation of 3H-thymidine. 3H-thymidine was incorporated in the nuclei of mesenchymal cells in intermyotomal fissures of younger myotomes and then in those of older myotomes between the myotubes revealing the proliferation of mesenchymal cells. As expected, nuclei of differentiating mononucleate myotubes did not incorporate 3H-thymidine. At later stages of myogenesis the myotubes were found to contain two classes of nuclei: large nuclei of the primary myoblasts (of myotomal origin) and smaller nuclei originating from secondary myoblasts of mesenchymal origin. TEM and autoradiographic analyses confirm that mulinucleate myotubes in X. laevis arise through fusion of secondary myoblasts with mononucleate myotubes.
EN
The effect of focal photothrombotic stroke on the distribution of D1 dopamine receptor (D1R) sites was examined in different cortical areas of rat brain with quantitative receptor autoradiography using [3H]SCH23390 as a ligand. Unilateral cortical stroke was located in the primary somatosensory cortex. After different survival times (1, 7 and 28 days) D1R binding levels were determined in the lesion core, penumbra, frontoparietal motor (FrPaM) and somatosensory (FrPaSS) areas as well as in homotopic regions in the contralateral hemisphere. One day after stroke, D1R density decreased by 36% (P<0.01) in the lesion core relative to sham-operated controls. At 7th day binding density was further reduced by 56% (P<0.002). Twenty-eight days after infarction, D1R binding returned to control level. No alterations in D1R binding levels were found in penumbra and other investigated regions. We suggest that the return of D1R binding to control level in the area initially corresponding to the infarct results from the shrinkage of the lesion volume.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.