Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  87.85.Lf
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This research concerns the development of solvent-cast lyophilised composite sponges in the bioactive glass-alginate-chitosan system for alveolar bone tissue maintenance following tooth extraction. Hydroxyapatite formed on the surfaces of pure alginate, 50:50 alginate:chitosan blend and pure chitosan sponges blended with 10 wt.% bioactive glass within 7 days of exposure to simulated body fluid, indicating that they possess the potential to stimulate bone tissue formation. In the absence of bioactive glass, pure chitosan sponges also demonstrated in vitro bioactivity, to a lesser extent; unlike pure alginate and 50:50 alginate:chitosan blend, which did not. All samples formed macroporous sponges whose biocompatibility with human osteosarcoma cells increased as a function of chitosan-content. Polyelectrolyte complex formation between alginate and chitosan, and the incorporation of bioactive glass were found to increase the swelling capacity of the sponges in SBF. The findings of this study demonstrate that, bioactive glass-chitosan sponges are the favoured candidates for alveolar bone tissue augmentation as their rate of hydroxyapatite formation and biocompatibility are superior to those of the other samples.
EN
Hydroxyapatite is very-well known as the main component of hard tissues and, as such, it has attracted much attention by researchers in the recent decades. This study was aimed to present the characterization of Y₂O₃ doped 50 wt.% hydroxyapatite - 50 wt.% Al₂O₃ composite materials fabricated at relatively high temperature of 1600°C. Hydroxyapatite powder was obtained from bovine bones via calcination and ball milling technique. Fine powders ( ≤ 1 μm) of hydroxyapatite/Al₂O₃ were admixed with 0.5 and 1 wt.% Y₂O₃ powders. Powder compacts were sintered at 1600°C for 4 h in air atmosphere. The field emission scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction studies following the relative density measurements were conducted. Moreover, the microhardness was studied as the mechanical property of sintered samples. The effect of increasing Y₂O₃ content on surface morphology, elemental distribution and phase evaluation was investigated in hydroxyapatite/Al₂O₃ biocomposite materials. It was found that by increasing Y₂O₃ content, the relative density increased up to 98.8%, while the hardness increased to 863 HV_{(0.2)}. The main phases, which were found, are Hibonite - CaO(Al₂O₃)₆ and beta-tricalcium phosphate - Ca₃(PO₄)₂, according to X-ray diffraction pattern.
3
Content available remote

Magnetic Polymer Nanocomposite for Medical Application

38%
EN
Magnetic sponges derived from biocompatible and resorbable polymers are promising materials for medical applications. These materials have been utilised extensively in research applications for the capture of biomolecules and cells, the construction of tissue scaffolds and in regenerative medicine. The object of this study was a polymer scaffold made of polycaprolactone (PCL) containing a 10 wt% amount of nanomagnetite, manufactured in a two-step method. The porosity and morphological parameters were characterised with the use of μ-computer-aided tomography and scanning electron microscopy. Furthermore, the magnetic properties were evaluated. The obtained results confirmed high porosity and the appearance of randomly oriented pores. Moreover, evaluations of the magnetic properties, of both the magnetite nanopowder and the prepared magnetic nanocomposite, were performed. The tests verified the ferromagnetic character of the materials under investigation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.