Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  87.80.Ek
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Finite element modeling allows the optimization of metalworking processes and enhances the quality of the product, in terms of properties and microstructure, as attested by the success of recent finite element modeling codes in simulating the microstructural evolution during hot deformation. Hot working of metals involves several concurring phenomena; in particular, dynamic and static recrystallizations depend on the energy stored in the grains during and after deformation, i.e. on the strain accumulated in the material. As a result, the correct estimation of the accumulated strain plays a crucial role in modelling the final microstructure. A new constitutive model based on the combination of the Garofalo and Hensel-Spittel equations has been thus recently proposed to describe the plastic flow behavior of an aluminum alloys. The new equation was used in the present paper to model the equivalent stress vs. equivalent strain curved obtained by testing in torsion between 550 and 700°C a CW602N (Cu-36%Zn-2%Pb-As) brass. Interpolation of the experimental data using the constitutive model resulted in an excellent description of the flow curves, thus demonstrating that the combined use of the new equation and of torsion testing can be safely adopted in a computer code to simulate forging or extrusion.
EN
Special optical system for non-invasive determination of small variations in the optical properties of homogeneous turbid inclusions embedded into large turbid medium is proposed and developed experimentally. Results for different choice of the optical parameters of both media are presented. The minimum detectable changes in the inclusion optical properties are estimated to be less than 5% with respect to the surrounding medium. It is shown that the output signals depend not only on the relative magnitude but also on the sign of the difference in optical properties of both media. The results could be used for developing techniques and algorithms for distinguishing of different kinds of abnormal formations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.