Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  81.15.Kk
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper we report on ZnCoO thin films grown by atomic layer deposition method in reactor F-120 Satellite. ZnCoO films were grown at low temperature (T_s=160°C) with a new zinc precursor (dimethylzinc - DMZn) and with cobalt (II) acetyloacetonate (Co(acac)₂) as a cobalt precursor and deionized water as an oxygen precursor. In this paper we concentrate on the methods of homogenizing Co distribution in ZnCoO films.
EN
Electrical and magnetic properties of ZnCoO thin films grown on silicon substrates by atomic layer deposition method are investigated. The films were grown using reactive organic precursors of zinc and cobalt. The use of these precursors allowed us the significant reduction of a growth temperature to 200°C and below, which proved to be very important for the growth of uniform films of ZnCoO. We have measured the microwave AC conductivity and EPR for two types of ZnCoO samples, with different Co fractions.
EN
Gallium nitride layers were deposited on AlN and double layer (AlN/AlGaN) buffers grown at various temperatures on Al_{2}O_{3}. Stress in layers was evaluated based on the Raman scattering and photoluminescence measurements. The obtained values were less than 1 GPa.
EN
ZnCuO thin films have been deposited on silicon, glass and quartz substrates by atomic layer deposition method, using reactive organic precursors of zinc and copper. As zinc and copper precursors we applied diethylzinc and copper(II) acetyloacetonate. Structural, electrical and optical properties of the obtained ZnCuO layers are discussed based on the results of scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, atomic force microscopy, the Hall effect and photoluminescence investigations.
EN
We report on the structural, electrical and magnetic properties of ZnCoO thin films grown by atomic layer deposition method using reactive organic precursors of zinc and cobalt. As a zinc precursor we applied either dimethylzinc or diethylzinc and cobalt(II) acetyloacetonate as a cobalt precursor. The use of these precursors allowed us the significant reduction of a growth temperature to 300°C and below, which proved to be very important for the growth of uniform films of ZnCoO. Structural, electrical and magnetic properties of the obtained ZnCoO layers will be discussed based on the results of secondary ion mass spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, atomic force microscopy, Hall effect and SQUID investigations.
EN
ZnO thin films were grown on silicon substrate by atomic layer deposition method. We explored double-exchange chemical reaction and used very volatile and reactive diethylzinc as a zinc precursor. These enables us to obtain zinc oxide thin films of high quality at extremely low growth temperature (90-200ºC). The films are polycrystalline as was determined by X-ray diffraction and show flat surfaces with roughness of 1-4 nm as derived from atomic force microscopy measurements. Photoluminescence studies show that an edge emission of excitonic origin is observed even at room temperature for all investigated ZnO layers deposited with the diethylzinc precursor.
EN
Recently we demonstrated growth of monocrystalline ZnO films by atomic layer epitaxy in the gas flow variant using inorganic precursors. In this study, we discuss properties of ZnO films grown with organic precursors. Successful Mn doping of the ZnO films during the growth was achieved using the Mn-thd complex. Secondary ion mass spectroscopy and X-ray investigations reveal the contents of Mn up to about 20% of the cationic component.
EN
We prepared nanoscaled particles consisting of ferromagnetic material on a nanostructured template. This nanolithographic procedure allows to fabricate high-density magnetic nanodots in a highly ordered way. For this purpose, Fe particles were grown on the c(2×2)-N/Cu(001) surface which exhibits a checkerboard-like structure. Scanning tunneling spectroscopic measurements demonstrate that the electronic properties of the areas with deposited material are identical to clean copper. Fe nanoparticles on the reconstructed patches show a significantly different electronic behavior. These observations directly hint to a covering of iron with copper on the clean surface.
EN
Magnetic, structural, and optical properties of ZnMnO films grown with atomic layer epitaxy are discussed. Atomic layer epitaxy films were grown at low temperature using organic zinc and manganese precursors. From magnetometry and electron spin resonance investigations we conclude that lowering of a growth temperature significantly limits formation of Mn precipitates and inclusions of different foreign phases of manganese oxides to ZnMnO host.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.