Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  77.55.Px
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We use pulsed laser deposition to grow YBa_2Cu_3O_{7-δ} (YBCO) superconducting films for microwave applications. The films are grown on R-cut sapphire substrates, with CeO_2 buffer layers, which are re-crystallized at high temperature prior to YBCO growth. Using the atomic force microscopy (AFM) and X-ray diffractometry we determine the optimal temperature for recrystallization (1000°C) and the optimal buffer layer thickness (30 nm). The properties of YBCO films of various thickness, grown on the optimized CeO_2 buffer layers, are studied using several methods, including AFM, magnetooptical imaging, and transport experiments. The YBCO film roughness is found to increase with the increasing film thickness, but the magnetic flux penetration in the superconducting state remains homogeneous. The superconducting parameters (the critical temperature and the critical current density) are somewhat lower than the similar parameters for YBCO films deposited on mono-crystalline substrates.
EN
In this work we study the growth, by pulsed laser deposition, of YBa_2Cu_3O_{7-δ} (YBCO) films on the CeO_2-buffered R-cut sapphire substrates, with the buffer layer recrystallized prior to the deposition of superconductor. We find that the superconducting critical temperature and the critical current density of the films are very close to similar parameters for the YBCO films grown on lattice-matched single crystalline substrates. It appears that the structural defects in the buffer layer affect the microstructure of YBCO films, resulting in high values of the critical current density, suitable for applications.
EN
The aim of this work was the evaluation of ion-beam induced luminescence for the characterization of luminescent oxide materials containing rare earth elements. The yttrium aluminium garnet epilayers doped with Nd, Pr, Ho, and Tm atoms were used. The ion-beam induced luminescence spectra were excited using 100 keV H_2^{+} ion beam and were recorded in the wavelengths ranging from 300 nm up to 1000 nm. The separate parts of the surface of the same samples were used for ion-beam induced luminescence and cathodoluminescence experiments. Cathodoluminescence spectra have been recorded in the range from 370 nm up to 850 nm at 20 keV e-beam in scanning electron microscope equipped with a grating spectrometer coupled with a photomultiplier. The observed narrow ion-beam induced luminescence lines can be ascribed to the well known radiative transitions in the rare-earth ions in the YAG crystals. The cathodoluminescence spectra reveal essentially the same emission lines as ion-beam induced luminescence. The decrease of the ion-beam induced luminescence lines intensity has been observed under the increasing ion fluences. The ion-beam induced luminescence may be used for characterization of transparent luminescent materials as an alternative method for cathodoluminescence and can be especially useful for observation of ion-beam damage formation in crystals.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.