Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  7-ketocholesterol
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Colonization of gastric tissue in humans by H. pylori Gram-negative bacteria initiates gastric and duodenal ulcers and even gastric cancers. Infections promote inflammation and damage to gastric epithelium which might be followed by the impairment of its barrier function. The role of H. pylori components in these processes has not been specified. H. pylori cytotoxicity may potentially increase in the milieu of anti-inflammatory drugs including acetylsalicylic acid (ASA). The lipid transport-associated molecule such as low density lipoprotein (LDL), which is a classic risk factor of coronary heart disease (CHD) and 7-ketocholesterol (7-kCh) a product of cholesterol oxidation, which may occur during the oxidative stress in LDL could also be considered as pro-inflammatory. The aim of this study was to evaluate the cytotoxicity of H. pylori antigens, ASA, LDL and 7-kCh towards Kato III gastric epithelial cells, on the basis of the cell ability to reduce tetrazolium salt (MTT) and morphology of cell nuclei assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Kato III cells were stimulated for 24 h, at 37°C and 5% CO2, with H. pylori antigens: cytotoxin associated gene A (CagA) protein, the urease A subunit (UreA), lipopolysaccharide (LPS) and ASA, LDL or 7-kCh. H. pylori LPS, ASA, LDL and 7-kCh, but not H. pylori glycine acid extract (GE), demonstrated cytotoxicity against Kato III cells, which was related to a diminished percentage of MTT reducing cells and to an increased cell population with the signs of DNA damage. The results suggest that damage to gastric epithelial cells can be induced independently by H. pylori antigens, ASA and endogenous lipid transport-associated molecules. During H. pylori infection in vivo, especially in CHD patients, synergistic or antagonistic interactions between these factors might possibly influence the disease course. Further study is necessary to explain these potential effects.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.