Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  61.80.Lj
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The results of surface structure investigations of TiCrN coating on carbon steel after irradiation by high- and low energy krypton ions and successive two-hour vacuum annealing are reported in the present publication. Specimens with the TiCrN coatings of the 50÷100 nm thickness were formed by vacuum arc deposition techniques. The prepared specimens were irradiated by low energy (280 keV) and high energy (125 MeV) krypton ions. Study of surface structure was done by scanning electron microscopy and atomic force microscopy. X-ray diffraction and the Rutherford backscattering spectrometry were applied for determination of structure and coating thickness. After irradiation by high energy Kr ions there appear convexities of spherical shape with dimensions 10÷30 nm on the surface of the coating. Subsequent two-hour vacuum annealing led to decrease of convexities dimensions. Irradiation by low-energy Kr ions does not lead to significant changes in the structure of the coating surface. Only traces of surface sputtering are found. Explanation of the observed surface damage is proposed. Convexities are the traces of ions passing through coating and appear due to structural reconstruction at energy release along a trajectory of ions braking. As the projective range of high energy Kr ions exceeds coating thickness, then damage of structures is generated in the substrate and convexities are the traces of undersurface damages.
EN
In this work the characteristic radiation, emitted during interaction of medium energy (200 keV) ambient heavy ions (Ar) with Fe_{4}Co_{66}Si_{12}B_{14}Nb_{1}Mo_{2}Cu_{1} (VV-6025X) amorphous alloy, was measured in grazing incident-exit angle geometry and in time sequence, in order to determine dynamics of formation of subsurface region, damaged through implantation, sputtering and interface mixing. It was shown that structure and composition of surface is unstable against heavy ions irradiation due to preferential sputtering and implantation of ions, and recoils, and that the dynamics of such modification can be monitored in-situ with particle induced X-ray emission (PIXE) method.
EN
The differences in the Rutherford backscattering angular spectra measured for 100 keV hydrogen atoms H^0 and protons H^+ backscattered from Si crystal are reported and analysed. It was shown that the H^0 atom beam is better channelled in the pure crystal and is much more sensitive to the crystal surface coverage, particularly Au layer than the H^+ ion beam. The deep crystal regions seem to strengthen this differences.
4
Content available remote

Energy Loss of Excited Slow Ions in Electron Gas

51%
|
|
vol. 96
|
issue 3-4
429-436
EN
The electronic energy loss and the straggling of the energy loss of the degenerate electron gas for excited H*-, He*-, He**-, and Li*-like ions were calculated. The results were compared with the corresponding characteristics for ions kept in the ground state. The linear response theory was used. The ion was described by the Hartree-Fock-Slater formalism and the medium by the dielectric function. The stopping and straggling effective charges Z_{ef} for the energy loss were analysed and they were found to differ from each other and to depend on the one-electron radius r_{s}, on the ion atomic number Z_{i}, and on the number of electrons N_{i} carried by the ion.
EN
The aim of this work was the evaluation of ion-beam induced luminescence for the characterization of luminescent oxide materials containing rare earth elements. The yttrium aluminium garnet epilayers doped with Nd, Pr, Ho, and Tm atoms were used. The ion-beam induced luminescence spectra were excited using 100 keV H_2^{+} ion beam and were recorded in the wavelengths ranging from 300 nm up to 1000 nm. The separate parts of the surface of the same samples were used for ion-beam induced luminescence and cathodoluminescence experiments. Cathodoluminescence spectra have been recorded in the range from 370 nm up to 850 nm at 20 keV e-beam in scanning electron microscope equipped with a grating spectrometer coupled with a photomultiplier. The observed narrow ion-beam induced luminescence lines can be ascribed to the well known radiative transitions in the rare-earth ions in the YAG crystals. The cathodoluminescence spectra reveal essentially the same emission lines as ion-beam induced luminescence. The decrease of the ion-beam induced luminescence lines intensity has been observed under the increasing ion fluences. The ion-beam induced luminescence may be used for characterization of transparent luminescent materials as an alternative method for cathodoluminescence and can be especially useful for observation of ion-beam damage formation in crystals.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.