Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  47.32.Ef
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 126
|
issue 3
717-724
EN
This work presents a numerical simulation of premixed methane-air low swirl stabilized flame, the geometry describes a low swirl burner kind. Reynolds average Navier-Stokes standard κ-ε model for turbulence coupling to partially premixed model for combustion were used with varying methane equivalence ratio from 0.6 to 1.4. Parameters governing flame structure are investigated; velocity, temperature, CH_4 distribution and thermal nitric oxide apparitions fields, results are compared and validated with experimental and large eddy simulation works cited in references, they offer good similarities for all flame parameters studied. Actual study works to find equilibrium between the maximum of generated temperature and the minimum of thermal NO pollutant emissions for low swirl burners without neglecting the flame stabilization which must be maintained.
Acta Physica Polonica A
|
2013
|
vol. 124
|
issue 6
1082-1086
EN
We analyze 2-}dimensional chaotic forms resulting from very simple systems based on two chaotic characteristics that is rotation and parallel movement or translation in geometric terms. Reflection is another alternative, along with rotation, for several interesting chaotic formations. Rotation and translation are very common types of movements in the world around us. Chaotic or non-chaotic forms arise from these two main generators. The rotation-translation chaotic case presented is based on the theory we analyzed in the book and in the paper. An overview of the chaotic flows in rotation-translation is given. There is observed the presence of chaos when discrete rotation-translation equation forms are introduced. In such cases the continuous equations analogue of the discrete cases is useful. Characteristic cases and illustrations of chaotic attractors and forms are analyzed and simulated. The analysis of chaotic forms and attractors of the models presented is given along with an exploration of the characteristic or equilibrium points. Applications in the fields of astronomy-astrophysics (galaxies), chaotic advection (the sink problem) and Von Karman streets are presented.
EN
In order to survive the competition, the processing cycle time and the energy consumption of the rotational foam molding process must be reduced to a fraction of its current levels without compromising product quality. This paper introduces a novel extrusion-assisted rotational foam molding process for the manufacture of rotational moldings having adjacent, but clearly distinct, layers of an integrated solid (non-cellular) skin boundary layer encapsulating a cellular core structure, consisting of identical or compatible polyolefin grades, that achieves significant savings in processing cycle time duration and energy consumption. It introduces non-chilled extruded foam as a foamed core-forming material, in real time, directly into a uni-axially rotating hot mold through a dedicated mold "injection" port onto the already formed un-foamed soft skin layer.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.