Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  45.70.-n
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We study the compaction dynamics of frictional hard disks in two dimensions, subjected to vertical shaking, by numerical simulation. Shaking is modeled by a series of vertical expansions of the disk packing, followed by dynamical recompression of the assembly under the action of gravity. The second phase of the shake cycle is based on an efficient event-driven molecular-dynamics algorithm. We analyze the compaction dynamics for various values of the friction coefficient and the coefficient of normal restitution. The granular organization at local level was studied by analyzing the shape factor ξ of the local volumes, associated with a natural way of subdividing the volume into local parts - the Voronoi partition. It gives a clear physical picture of the competition between less and more ordered domains of particles during the compaction. We calculate the distribution of the shape-factor for packings at different stages of the compaction process. We have also investigated a two-dimensional granular medium experimentally. We prepared the granular packings of metallic cylinders of diameters 4, 5, and 6 mm. The distributions of the shape-factor obtained numerically for various tapping intensities are consistent with our experimental results.
EN
Granular materials have vast applications both in industry and in daily life. They display quite interesting and exceptional properties different from the other known forms of matter. To investigate the complex properties of particulate materials, experimental, analytical, and numerical techniques have been employed. In this paper the results of experimental and numerical tests of various grain sizes and coefficient of friction between granules and cylindrical walls on the mass measured at bottom of container, known as apparent mass, are reported. It is revealed that apparent mass augments with the grain size. Moreover, it is also found that the variation in apparent mass measurement is strongly dependent on bead diameter rather than the silo size. The results suggest that the conversion of vertical stresses into horizontal in silo is mainly due to the friction between the grain and system boundary than the arching phenomenon.
EN
Convection in horizontally vibrated granular systems is significant for scientists and engineers for their importance in the field of mining, geo-physics, and pharmaceutical etc. This research work studied three types of convection rolls, "Homogeneous convection roll", "lower-right diagonal convection roll" and "upper-right diagonal convection roll" which occurred in a square container filled with binary granular particles mixture of sized d=(4.0±0.2) mm and d=(8.0±0.2) mm. Container was vibrated horizontally with low frequencies f and low dimensionless acceleration Γ. Helical movement was observed along the walls perpendicular to direction of motion while straight-line movement along the walls horizontal to direction of motion. Helical and straight-line movements of particles along the walls are the part of convection rolls. A heap appeared due to vibration, which has dominant effect on the convection rolls. Heap position is function of frequency f and dimensionless accelerations Γ.
Open Physics
|
2003
|
vol. 1
|
issue 4
596-605
EN
We consider the complex problem of how to calculate particle motions taking into account multiparticle collisions. Multiparticle contacts occur when a particle collides with neighbouring particles, so that those contacts have a direct influence on each other. We will focus on the molecular dynamics method. Particularly, we will analyse what happens in cohesive materials during multiparticle contacts. We investigated the expression of repulsive force formulated under fractional calculus which is able to control dynamically the transfer and dissipation of energy in granular media. Such approach allows to perform simulations of arbitrary multiparticle collisions and also granular cohesion dynamics.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.