Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  43.20.-f
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The energetic aspect of the sound radiation has been analyzed in the case of the three-wall corner region. This region is the part of space bounded by three baffles arranged perpendicularly to one another. The Neumann boundary value problem has been solved assuming that the sound source is the vibrating circular plate embedded in one of the baffles of the three-wall corner region. The Kelvin-Voigt theory of a visco-elastic plate has been used which allows to include internal attenuation existing in the plate material. It has been assumed that the sound source is excited to vibrations by the external pressure asymmetrically distributed on the plate surface. The modal coefficients of the acoustic impedance have been obtained in the form of the expressions containing single integrals only. The formula describing the acoustic power of the analyzed sound source has been presented as a fourfold infinite series containing the modal coefficients of the acoustic impedance. The influence of some asymmetric excitations on the acoustic power has been analyzed. The possibilities of the modelling some uniform excitations located on the plate fragment of the small area by the point force excitation has been examined. The influence of the transverse baffles on the acoustic power has also been investigated. It has been determined for which frequency the baffles influence on the acoustic power is the greatest.
EN
The Neumann boundary value problem has been solved for the region bounded by the three perfect rigid infinite baffles arranged perpendicularly to one another. The harmonically vibrating clamped circular plate embedded in one of the baffles is the sound source. It has been assumed that the amplitude of the plate's transverse vibrations is small to use the linear Kelvin-Voigt theory. The Green function has been applied to obtain the asymptotic formulae describing the distribution of the acoustic pressure within the Fraunhofer zone. The analysis of sound radiation has been performed for some selected surface excitations and for some different plate's locations. The acoustic pressure distribution has been examined including the acoustic attenuation and the internal attenuation of the plate's material.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.