Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 11

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  42.25.Ja
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2012
|
vol. 122
|
issue 5
818-820
EN
The paper presents a measuring stand which permits to determine the attenuation and modal birefringence of planar waveguide structures. The light is introduced into the waveguide through a prismatic coupler. This permits to determine attenuations of the subsequent modes. Mounting the polarizer in front of the lens of the camera it becomes possible to determine on the same test stand the modal birefringence of orthogonal pair of modes of the same order.
EN
The paper addresses a compensation method of polarization mode dispersion based on longitudinal strain applied to a highly birefringent fiber introduced as apart from optical fiber link. As an introduction a short overview of the polarization mode dispersion compensation methods known up-to-now is done. Dependence of polarization mode dispersion on longitudinal strain is discussed. Some results of experiment with birefringence changes due to longitudinal strain in the bow-tie highly birefringent fiber necessary for dynamic polarization mode dispersion are presented.
EN
The paper discusses influence of polarization mode dispersion on performance of polarimetric systems with highly birefringent fibers. It appeared that polarization mode dispersion strongly influences a degree of polarization that depends on coherence of the light source used and simultaneously diminishes dynamics of the output signal.
EN
Two-dimensional images of the artificial magnetic field created by permanent magnets were obtained by means of the Faraday magnetic rotation effect. This provides a convenient and effective means to observe and measure macro-scale magnetic field, as well as lays a base for three-dimensional optical imaging of magnetic field. The magnetic field imaging here can also be considered as a key part of the magnetic rotation geomagnetic field imaging method which we put forward before, and will provide experimental support for this method.
EN
In this paper we revise recent results of our team in the optimization of twisted nematic liquid crystal displays to be used as spatial light modulators for image processing and diffractive optics. In general two kind of responses are desired for the mentioned applications: amplitude-only and phase-only modulations. However, it is not a trivial task to find the polarization configurations for which these responses are obtained. We show that a reverse-engineering approach is needed to optimize the liquid crystal display response. According to this reverse-engineering approach the modulation characteristics can be calibrated by evaluating the modulation response in a few polarization configurations. These results are used to fit the liquid crystal display behavior to a simplified physical model, which uses two modulation parameters. We demonstrate that the degree of accuracy of this model is very high, thus enabling the prediction of the modulation behavior of the display at other polarization configurations. Therefore, we can perform computer searches for the optimum orientation of the polarizing elements to obtain the required optical transmission. We demonstrate the need to use short wavelengths and the need to insert wave plates in front and behind the liquid crystal displays to obtain either amplitude-only or phase-only regime.
6
100%
|
EN
The paper presents two methods of determining the planar waveguide birefringence and the measuring stands, which are used to determine the beat length of planar waveguide structures. The light is introduced into the waveguide through a prism coupler. The first method applies measurements of scattered light. The second method uses an immersion coupler. The most fundamental property of an immersion coupler is the possibility to change fluently the propagation length while immersing the waveguide.
|
|
vol. 126
|
issue 1
274-275
EN
Oxyhalides of bismuth BiOX (X = Cl, Br, I) are very interesting materials which find various applications as X-ray luminescent screens, as anti-Stokes converters, photocatalyst, usual luminophors and as photoconductive analyzer of linear polarized radiation in the 0.24 - 1.2 μm spectral region. The great interest for these materials is strongly related to the influence of dimensionality on the behaviour of physical properties (they are 2D structured materials). Bismuth oxyhalides are one of the V-VI-VII group compound semiconductors belonging to the tetragonal system. The structure of BiOX is known to have a layered structure, which is constructed by the combination of the halide ion layer and the bismuth oxygen layer. We present results of the study of photoconductivity spectra anisotropy of the BiOX single crystals.
EN
Hydrogen bond has dual property, classical (electrostatic interaction based on Coulomb's law) and quantum (wave function based on Schrödinger equation). Since Planck's constant is one of the main criteria for decision which process is quantum, or how much is close to be quantum, we use electrical and magnetic forces of valence electrons, as point of departure, to develop method for opto-magnetic fingerprint of matter. During the study of different type of matter we observed phenomena from spectral convolution data of digital images which characterize matter from both covalent and non-covalent bonding. Since water is matter that is most abundant with hydrogen bonds, we present results of 18.2 MΩ water investigation on different temperature and under influence of constant and variable magnetic fields by opto-magnetic method. Bearing in mind that Linus Pauling, in his book Nature of the Chemical Bond (Cornel University Press, 1939), for the first time presented the systematic concept of the hydrogen bond to the molecular world and its machinery, this paper is written in honor to him and 70th anniversary of one of the most important scientific paradigm.
EN
The paper presents results on investigation of paratellurite based imaging tunable acousto-optic filters operating with arbitrary polarized light. We analyzed influence of dispersion of refractive indices in the crystal on a simultaneous satisfaction of the Bragg matching condition for ordinary and extraordinary polarized optical beams. The analysis was carried out at different optical wavelengths over the wide tuning range of the filters 400-1150 nm. Theoretical and experimental analysis of the problem proves that in a paratellurite tunable acousto-optic filter, the Bragg matching angle common for the two optical polarizations is varying in the limits up to 0.3°. This variation of the incidence angle may be as wide as a quarter of the filter angular aperture thus proving that the examined phenomenon should be considered in design of the imaging tunable acousto-optic filters.
EN
According to the most literature data, the skin is usually observed as a simple structure with equivalent electrical model, which includes general properties of epidermis, basal membrane and dermis. In this paper, we analyzed the skin structure as a more complex system. Particularly we analyzed epidermis based on layers approach and its water organization in lipids ordered in sub-layers. Using opto-magnetic spectroscopy method, which is very sensitive to paramagnetic/diamagnetic properties of the tissue, we found out that nanowater structure ordering in lipids of epidermal layers play very important role in skin properties. We use bioimpedance as complementary and compatible method to opto-magnetic spectroscopy in skin characterization. In our investigation we found out the difference of the skin properties of the people who are drinking two different type of water (Z and N). We observed the significant difference in middle part of stratum granulosum, where water-lipid sub-layers exists. These results indicate importance of water nanolayers presence in epidermis and type of drinking water reflecting on human skin properties.
EN
Motivated by characterization of paramagnetic materials (Al, Mn and Ti) and diamagnetic materials (Cu, C and Zn) by opto-magnetic method that is based on light-matter interaction using digital imaging, we present results of Epstein-Barr virus (EBV) and cytomegalovirus (CMV) detection in blood plasma. To investigate light-blood plasma interaction we use wavelength difference of diffuse white light and reflected polarized light in red and blue channels of digital images (opto-magnetic method). Digital images of samples are analyzed by spectral convolution algorithm for light-matter interaction analysis. Since opto-magnetic method can detect very small difference between normal and pathological tissue states it is advantageous in comparison with classical methods. Especially it is important for early detection of suspicious tissue states and detection of viral infection presence in plasma. We compared our results with results of standard biomedical test for EBV and CVM, as a reference, and found out for group of 40 samples significant correlation of 93. 6%.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.