Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  34.50.+a
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the present paper two-body radiative recombination rate for the production of antihydrogen (H̅) in a merged beam of slow positrons (e^{+}) and antiprotons (p¯) is studied in the light of a two-step process, which consists of capture in an excited state of H̅ with subsequent decay to the ground state and emission of a photon. Computation is done using the field theory and the Coulomb gauge. Importance of the two-step radiative recombination process relative to the well-known spontaneous photorecombination process, on the two-body radiative recombination rate for antihydrogen formation, is discussed. The present result predicts higher contribution from the two-step radiative recombination process as compared to the spontaneous photorecombination process to the rate of cold antihydrogen formation with the relative collision energy below 0.01 Rydberg, near which experiments are being conducted. However, above 0.1 Rydberg the spontaneous photorecombination process dominates over the two-step radiative recombination process. The present result is valid, as well, for the formation of hydrogen atom due to collision between slow electron and proton.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.