Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  31.30.jh
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 125
|
issue 1
3-12
EN
The classical, electrodynamic definition of the ampere is incoherent with quantum electrodynamics. The problem, although insignificant at the macroscopic scale, manifests clearly at the nanostructure level, where the consistently quantum approach is necessary. In this paper, we consider the Casimir effect to quantify inconsistencies that could have resulted if electric metrology of microstructures and nanostructures (including graphene) had been based on classical electrodynamics and the current SI definition of the ampere. The issue is discussed in the context of the New SI program, where the base electric unit is to be redefined by fixing the numerical value of the elementary charge. The conclusion supports the case for a prompt redefinition of the base electric unit, which will make the electric metrology in general, and the electric metrology of nanostructures in particular, coherent with the international system of units.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.