Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  28.20.F
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The structure of a heterogeneous system influences diffusion of thermal neutrons. The thermal-neutron absorption in grained media is considered in the paper. A simple theory is presented for a two-component medium treated as grains embedded in the matrix or as a system built of two types of grains (of strongly differing absorption cross-sections). A grain parameter is defined as the ratio of the effective macroscopic absorption cross-section of the heterogeneous medium to the absorption cross-section of the corresponding homogeneous medium (consisting of the same components in the same proportions). The grain parameter depends on the ratio of the absorption cross-sections and contributions of the components and on the size of grains. The theoretical approach has been verified in experiments on prepared dedicated models which have kept required geometrical and physical conditions (silver grains distributed regularly in Plexiglas). The effective absorption cross-sections have been measured and compared with the results of calculations. A very good agreement has been observed. In certain cases the differences between the absorption in the heterogeneous and homogeneous media are very significant. A validity of an extension of the theoretical model on natural, two-component, heterogeneous mixtures has been tested experimentally. Aqueous solutions of boric acid have been used as the strongly absorbing component. Fine- and coarse-grained pure silicon has been used as the second component with well-defined thermal-neutron parameters. Small and large grains of diabase have been used as the second natural component. The theoretical predictions have been confirmed in these experiments.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.