Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2015
|
vol. 128
|
issue 2B
B-297-B-299
EN
Recently, both the progress in some technological fields and multidisciplinary studies conducted with collaboration from different branches of science have impressive effect on clinically tested systems. Studies on development of visual prosthesis, which is based on passing damaged parts of the visual pathway and electrically stimulating nerve cells remaining intact, date back to elicit visual sense in blind patients. Investigation of some research topics, in silico, which should be taken into consideration in the design phase before expensive animal experiments provides great advantages in terms of both financial and time issues. In this study, factors such as heat, electric field distribution for current thresholds, current density which should be discussed in the design phase are simulated using monophasic rectangle pulses depending on various stimulation parameters with developed computational retina model. Change of heat, electric field, current density in points selected from center and periphery of retina tissue are investigated for various stimulation parameters. As a result, it is concluded that distribution of heat and electric field intensity over the periphery retina are much less than center region. Moreover, when larger pulse width is used, change of heat and electric field intensity seems much more in regions from center retina near stimulation electrode. Current density is higher in the sharp ends of the electrode than flat regions. Besides, when the size of stimulation electrode increases, electric field distribution becomes more uniform.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.