Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Zinc oxide (ZnO) thin films (with thickness ranged from 780 nm to 1150 nm) were prepared by thermal oxidation in air (at 600-700 K, for 20-30 min) of vacuum evaporated metallic zinc films. The Zn films were deposited on glass substrates at room temperature. The crystalline structure of ZnO thin film samples was investigated using X-ray diffraction technique. The diffraction patterns revealed that the ZnO thin films were polycrystalline and have a wurtzite (hexagonal) structure. The film crystallites are preferentially oriented with (002) planes parallel to substrate surface. Some important structural parameters (lattice parameters of the hexagonal cell, crystallite size, Zn-O bond length, residual stress, etc.) of the films were determined. The surface morphology of the prepared ZnO thin films, investigated by atomic force microscopy, revealed a uniform columnar structure. The spectral dependence of transmission coefficient has been studied in the wavelength range from 300 nm to 1700 nm. The optical energy band gap calculated from the absorption spectra (supposing allowed direct band-to-band transitions) are in the range 3.17-3.19 eV. The dependence of the microstructural and optical characteristics on the preparation conditions (oxidation temperature, oxidation time, etc.) of the oxidized zinc films is discussed.
EN
In the paper there are shown the changes in optical properties of TiO_2 thin films prepared by dc magnetron sputtering at different gas flow rates. We found that there is a drastic change in optical properties such as optical transmission, refractive index, extinction coefficient and optical band gap with the gaseous flow rate and composition. We observed an improvement in optical properties of the films that had been deposited at higher gaseous flow rate and at a certain gaseous composition.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.