Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The surface of semi-isolating GaAs (100) was irradiated with a fluence of 6×10¹⁷ cm¯² of the N₂⁺ ion beam; then, the samples were thermally annealed at temperatures of 500, 700, and 900°C for 2 h in an argon gas flow. The surface roughness of implanted samples was investigated with the help of atomic force microscopy. Numerous hillocks, which caused a significant increase in surface roughness, were observed. The spectroscopic ellipsometry method was used for determination of pseudo-dielectric functions of the near-surface layers in the investigated samples and the thickness of native oxides covering the irradiated surface. It was observed that the shapes of disorder spectra of the dielectric functions of near-surface layers of implanted GaAs partly returned to their original state after the thermal annealing.
2
Content available remote

Thermal Desorption Studies of Ar^{+} Implanted Silicon

73%
EN
Thermal desorption spectrometry measurements were performed for Ar implanted Si samples. Implantation energy E_{i} varied in the range 85-175 keV. The release of implanted Ar in two steps was observed in the temperature range 930-1300 K: the relatively narrow peak at lower temperature ( ≈ 930 K for implantation fluence 5 × 10^{16} cm^{-2}) is due to the release of Ar from the agglomerations (bubbles) while the broader peak observed for higher temperatures ( ≈ 950 K for implantation fluence 5 × 10^{16} cm^{-2}) comes from Ar atoms diffusing out of the sample. Inverse order of peaks is observed compared to the results for lower energy implantations (< 50 keV). Analyzing the thermal desorption spectra collected for different heating ramp rates enabled estimation of the desorption activation energy (2 eV for E_{i} = 85 keV and 1.7 eV for E_{i} = 115 keV).
EN
Copper indium gallium diselenide (CIGS) becomes more significant for solar cell applications as an alternative to silicon. The quality of the layer has a critical impact on the final efficiency of the solar cell. An influence of the post-deposition millisecond range flash lamp annealing on the optical and microstructural properties of the CIGS films was investigated. Based on the Raman and photoluminescence spectroscopy, it is shown that flash lamp annealing reduces the defect concentration and leads to an increase of the photoluminescence intensity by a factor of six compared to the nonannealed sample. Moreover, after flash lamp annealing the degradation of the photoluminescence is significantly suppressed and the absolute absorption in the wavelength range of 200-1200 nm increases by 25%.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.