Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 3
367-381
EN
Staphylococcus aureus is a widespread, opportunistic pathogen that causes community and hospital acquired infections. Its high pathogenicity is driven by multifactorial and complex mechanisms determined by the ability of the bacterium to express a wide variety of virulence factors. The proteome secreted into extracellular milieu is a rich reservoir of such factors which include mainly nonenzymatic toxins and enzymes. Simultaneously, membrane proteins, membrane-cell wall interface proteins and cell wall-associated proteins also strongly influence staphylococcal virulence. Proteomics shows a great potential in exploring the role of the extracellular proteome in cell physiology, including the pathogenic potential of particular strains of staphylococci. In turn, understanding the bacterial physiology including the interconnections of particular factors within the extracellular proteomes is a key to the development of the ever needed, novel antibacterial strategies. Here, we briefly overview the latest applications of gel-based and gel-free proteomic techniques in the identification of the virulence factors within S. aureus secretome and surfacome. Such studies are of utmost importance in understanding the host-pathogen interactions, analysis of the role of staphylococcal regulatory systems and also the detection of posttranslational modifications emerging as important modifiers of the infection process.
EN
Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins.
EN
Staphylococcus aureus is a dangerous human pathogen characterized by growing antibiotic resistance. Virulence of S. aureus relies on a variety of secreted and cell surface associated virulence factors among which certain proteolytic enzymes play an important role. Amid staphylococcal extracellular proteases, those encoded by the spl operon remain poorly characterized, both in terms of enzymology and their physiological role. Initial data demonstrated that Spl proteases exhibit restricted substrate specificity. This study describes development of convenient protein FRET substrates for SplB protease and characterization of the substrate preference of the protease at the P1' position. Kinetic data on hydrolysis of a panel of substrates substituted at the said position is provided.
EN
Thermolysins constitute a family of secreted bacterial metalloproteases expressed, among others, by several pathogens. Strains of Staphylococcus pseudintermedius isolated from diseased dogs and judged as protease-positive, by skim milk agar plate culture, were investigated for protease content. No proteolytic activity was detected when the bacteria were grown in regular liquid media. Unexpectedly, supplementation of the medium with calcium ions resulted in expression of a metalloprotease and profound changes in the profile of extracellular proteins. On the basis of homology to other staphylococcal metalloproteases, the nucleotide sequence of the gene encoding this protease (Pst) and its flanking regions was determined. The full-length pst codes for a protein with an open reading frame of 505 amino acids. The internal region contains the HEXXH catalytic domain that is conserved in members of the thermolysin family. Regardless of the presence of calcium in the medium, the expression of the protease gene was of the same intensity. This suggests that regulation of the metalloprotease production by calcium ions is at a post-transcriptional level. Isolates of S. pseudintermedius exhibit a proteolytic phenotype due to the metalloprotease expression, however only in presence of calcium ions, which most probably stabilize the structure of the protease.
EN
X-ray crystallography provides important insights into structure-function relationship in biomolecules. However, protein crystals are usually hard to obtain which hinders our understanding of multiple important processes. Crystallization requires large amount of protein sample, whereas recombinant proteins are often unstable or insoluble. Green fluorescent protein (GFP) fusion is one of the approaches to increase protein synthesis, solubility and stability, facilitating crystallization. In this study we analyze the influence of the linker length, composition and the position of GFP relative to the fusion partner on the fusion protein production and stability. To this end, multiple constructs of enzymatically impaired variant of PemKSa toxin from Staphylococcus aureus CH91 fused to GFP were generated. Fusion protein production in Escherichia coli was evaluated. The proteins were purified and their stability tested. PemKSa-α14aa-GFP fusion provided best production and stability. Obtained results demonstrate the importance of optimization of fusion protein construct, including linker selection and the order of fusion partners, in obtaining high quantities of stable protein for crystallization.
6
Content available remote

New generation of peptide antibiotics

64%
EN
The increasing antibiotic resistance of pathogenic bacteria calls for the development of alternative antimicrobial strategies. Possible approaches include the development of novel, broad-spectrum antibiotics as well as specific targeting of individual bacterial virulence factors. It is impossible to decide currently which strategy will prove more successful in the future since they both promise different advantages, but also introduce diverse problems. Considering both approaches, our laboratory's research focuses on the evaluation of hemocidins, broad-spectrum antibacterial peptides derived from hemoglobin and myoglobin, and staphostatins, specific inhibitors of staphopains - Staphylococcus aureus secreted proteases that are virulence factors regarded as possible targets for therapy. The article summarizes recent advances in both fields of study and presents perspectives for further development and possible applications.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.