Transport and magnetic properties of polycrystalline Tm_{0.03}Yb_{0.97}B₁₂ samples were investigated at temperatures 1.8-300 K in magnetic fields up to 9 T. The activated behavior of resistivity, the Hall coefficient and thermopower is described in terms of a narrow gap ε_g ≈ 16.6 meV, which controls the charge transport in Tm_{0.03}Yb_{0.97}B₁₂ at T>40 K. The maximum of magnetic susceptibility found at 50 K is shown to be induced by a spin gap Δ ≈ 4.7 meV being close to the half of the spin fluctuation energy in YbB₁₂. Large diffusive thermopower S=AT, A=-29.1 μV/K² and the Pauli susceptibility χ₀ ≈ 7.2×10¯³ emu/mol found below 20 K seem to be associated with the many-body resonance, which corresponds to states with an enhanced effective mass m* ≈ 250m₀ (m₀ - free electron mass). The effective parameters of magnetic centers and the analysis of anomalies favor the nonequivalent states of substitute Tm ions.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.