Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Jacobian conjectures (that nonsingular implies a global inverse) for rational everywhere defined maps of $\bbb{R}^n$ to itself are considered, with no requirement for a constant Jacobian determinant or a rational inverse. The birational case is proved and the Galois case clarified. Two known special cases of the Strong Real Jacobian Conjecture (SRJC) are generalized to the rational map context. For an invertible map, the associated extension of rational function fields must be of odd degree and must have no nontrivial automorphisms. That disqualifies the Pinchuk counterexamples to the SRJC as candidates for invertibility.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.