Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Combinatorics of Lax Objects in Bethe Ansatz

100%
EN
Algebraic Bethe Ansatz, also known as quantum inverse scattering method, is a consistent tool based on the Yang-Baxter equation which allows to construct Bethe Ansatz exact solutions. One of the most important objects in algebraic Bethe Ansatz is a monodromy matrix M̂, which is defined as an appropriate product of so-called Lax operators L̂ (local transition operators). Monodromy matrix as well as each of Lax operators acts in the tensor product of the quantum space 𝓗 with an auxiliary space ℂ². Thus M̂, when written in the standard basis of auxiliary space, consists of four elements Â, B̂, Ĉ, D̂, which are the operators acting in quantum space 𝓗, where B̂ and Ĉ are step operators and the remaining generate all constants of motion. In this work a consistent method of construction of the Bethe Ansatz eigenstates in terms of objects â, b̂, ĉ, d̂ i.e. matrix elements of the Lax operators in the auxiliary space is proposed.
EN
We analyse the number field-theoretic properties of solutions of the eigenproblem of the Heisenberg Hamiltonian for the magnetic hexagon with the single-node spin 1/2 and isotropic exchange interactions. It follows that eigenenergies and eigenstates are expressible within an extension of the prime field ℚ of rationals of degree 2^3 and 2^4, respectively. In quantum information setting, each real extension of rank 2 represents an arithmetic qubit. We demonstrate in detail some actions of the Galois group on the eigenproblem.
EN
The paper presents result of experimental measurements of viscoelastic properties of agarose gel after sonication and with silver nanoparticles doped. Researches were conducted using a HAAKE MARS 2 rheometer (Thermo Electron Corporation, Karlsruhe, Germany), with serrated plate-plate measuring geometry. Viscoelastic properties of samples were measured with oscillation tests at constant deformation rate 0.1%, and frequency 1 Hz in the temperature range from 278 to 348 K. It was presented that using the sonication before solidification of gel results in increases of the storage modulus and complex viscosity of the solidified gel. It was also presented that when silver nanoparticles are doped into agarose gel, storage modulus and complex viscosity start to decrease at lower temperature.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.