Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The nonlinear interaction of acoustic and entropy modes in a bubbly liquid is considered. The reasons for interaction are both nonlinearity and dispersion. In the field of intense sound, a decrease in the mixture density is predicted. That corresponds to the well-established growth of bubbles volumes due to rectified diffusion. The nonlinear interaction of modes as a reason for a bubble to grow due to sound, is discovered. The example considers variation in the mixture density and bubbles radii caused by acoustic soliton.
EN
Instantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation. Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor, belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in the linear part of the final equation, but preserving terms belonging to the thermal mode responsible for heating. The procedure of decomposition is valid for weakly nonlinear flows, resulting in the nonlinear terms responsible for the modes interaction. Nonlinear acoustic terms form a source of acoustic heating in the case of dominative sound, which reflects the thermoviscous and dispersive properties of a fluid. The method of deriving the governing equations does not need averaging over the sound period, and the final governing dynamic equation of the thermal mode is instantaneous. Some examples of acoustic heating are illustrated and discussed, conclusions about efficiency of heating caused by different sound impulses are made.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.