Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The paper is focused on the reinforcement of hydroxyapatite (HA) by apatite wollastonite (AW) because of its aptitude for combining biocompability with mechanical properties superior to those of the bone. HA powders were produced by thermal extraction technique involving calcination from natural source. HA-AW_{P} biocomposites containing from 0 to 20 wt.% of AW in particulate form were prepared starting with wet ball milling during 24 h, followed by powder metallurgical processes using HA powders calcined at 800°C, followed by compaction by cold pressing and by cold isostatical pressing at 250 MPa and subsequent sintering at 1100-1300°C. The phases and compositions in the resulting products were identified by XRD and XRF. Reinforcement particle distribution were investigated on polished surfaces of the sintered samples by SEM analysis and by optical microscopy. Mechanical properties of the sintered samples was evaluated via Micro Vickers hardness testing.
EN
Si₃N₄-SiC micro-nano composite powder has been studied by a group of authors during the last decade. Previous works have shown that SiC-Si₃N₄ ceramics exhibits good mechanical properties and high corrosion resistance at elevated temperatures. In this study, we have tried a new approach to obtaining SiC-Si₃N₄ ceramic composite powder by changing the conditions in the carbothermal reduction process. Starting powders were quartz mineral, received from Ege-Sil Co., as silicon-source and, carbon, as silica-reducing and carburizing agent. These powders were ground in the ring mill, separately and together. Carbothermal reduction-nitridation/carburization reactions were carried out in a tube furnace at >1400°C for 4 hours under N₂ and Ar gas, used as nitriding and shielding atmosphere. The synthesized powders were characterized by X-ray diffraction, SEM, and EDS. Results have shown that production of Si₃N₄-SiC micro-nano composite powder was achieved in the modified nitrogen and argon atmosphere above 1400°C. Determination of the Si₃N₄/SiC ratio was possible with sensitive control of the system conditions.
EN
The aim of this study was to evaluate the effects of Schiff base metal complex on the bio-compatible hydroxyapatite (HAp) ceramics. The reason for that was to produce, as the final product, the HAp in powder form, with extraordinary features like analgesic, antibacterial properties. This effect was provided by doping HAp powder with some Schiff base complexes during the powder extraction process. Schiff base complex used in the study was synthesized by condensation of primary amines with carbonyl compounds. The chemical structures of the synthesized compounds were confirmed by means of infrared (IR) spectroscopy and elemental analysis. Characterizations of the extracted HAp powders were carried out by using scanning electron microscopy for surface analysis and EDS analysis, X-ray diffraction for phase determination and grain size distribution. The bactericide effects of Zn SAE-added pure HAp were tested on E.Coli bacteria for the content range of 0-7 wt.% of Zn-SAE. Consequently, bacterial activity of the calcium phosphate resulting powders was evolved by adding the Zn SAE Schiff base complex.
EN
The composite materials formed by powder metallurgy are mostly used in industry due to their excellent properties such as low density, high strength, and hardness. The aim of this study is to produce functional graded Al material reinforced with macro-sized Al₂O₃. To fabricate the aluminum matrix composite, commercial Al 2124 aluminum alloy powder (from Gürel Makina), which is used in aerospace and defense industries, was chosen as a matrix material. Powder metallurgy was used to produce the functional graded material because it allows an easy incorporation of reinforcement phase into the matrix. The sintered samples were characterized using optical microscopy, SEM, and X-Ray diffraction analysis. The results show that functional graded material structure and the transition interlayers were achieved by the presented process.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.