Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Background: Recent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge. Material/Methods: Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed. Results: The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females. Conclusions: This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.
EN
Background: The repetitive transmission of impact forces may contribute to the aetiology of overuse injuries. Therefore determining the mechanisms that regulate impact loading has potential clinical significance.This study aimed to determine the influence of lower extremity coronal plane kinematics on the regulation of impact loading during running. Material/Methods: Thirty-six participants ran at 4.0 m.s-1striking the centre of a piezoelectric force platform with their dominant limb. Coronal plane angular kinematics about the hip, knee and ankle joints were measured using an eight-camera motion analysis system operating at 250 Hz. Regression analyses with instantaneous loading rate magnitude as a criterion were used to identify the coronal plane parameters associated with impact loading. Results: The overall regression model yielded Adj R2 = 0.37, p ≤ 0.01. Two biomechanical parameters were obtained as significant predictors of the instantaneous loading rate. Peak ankle eversion Adj R2 = 0.22, p ≤ 0.01 and peak eversion angular velocity of the ankle Adj R2 = 0.15, p ≤ 0.01 were found to be significant predictors of instantaneous loading rate. Conclusions: The findings of the current investigation therefore suggest that passive joint motions in the coronal plane can regulate the magnitude of impact loading, linked to the development of chronic injuries.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.