Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
An optical strain sensor was developed for use in stretchable electronics. It consists of a diffraction grating formed directly on the examined surface illuminated by a laser beam which creates interference pattern. This pattern can then be used to determine axial and lateral strains for a uniaxial stress states. Direct laser interference patterning was employed as a fast processing tool for the preparation of micro- and sub-microgratings. Two coherent beams of Nd:YAG laser with 532 nm wavelength and pulse duration of 10 ns were used to selectively remove material from the irradiated sample surface. This technique creates periodic pattern on the metallized surface of polymeric substrates. New sensors formed by direct laser interference patterning method were able to resolve higher order diffraction maxima, which would be of benefit for strain measurement application. Experimental setup for tensile tests was composed of laser probe, the sensor element, and CCD camera. To extract strain values, we analysed acquired interference pattern images in real time software, developed with LabVIEW environment. This kind of contactless strain sensor is suitable for examination of stretchable electronics component for which conventional tensile tests are either not acceptable or can interfere with its normal operation.
EN
We studied changes of morphology and magnetic properties of Co/Cu multilayered nanowires, electrodeposited in polycarbonate membranes, as a function of Cu layer thickness. The morphology and structure of wire assemblies with an average diameter of 200 nm and length of 10 μ m, investigated by X-ray diffraction and scanning electron microscopy techniques, revealed polycrystalline structure of Cu and Co layers with smooth lateral surface of nanowires. Overdeposited nanowires created caps which showed flower-like dendrites with shape changing as a function of Cu thickness and electrodeposition parameters. Chemical composition of Co and Cu nanowires analysed by energy dispersive spectroscopy and proton induced X-ray emission showed Cu nanowires free from Co atoms while in Co nanowires, Cu contamination with concentration below 10% was observed. The oxidation traces observed in single-component Cu nanowires did not appear in multilayered nanowires. Magnetic measurements indicated easy axis of magnetization in membrane plane for nanowires with Cu thickness smaller than 20 nm, whereas for larger Cu thicknesses isotropic orientation of magnetization was observed. The presence of Cu atoms in single-component Co nanowires resulted in the appearance of magnetic anisotropy with easy axis along nanowire axis and the increase of coercivity value.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.