Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report on the Raman scattering from single-layer molybdenum disulfide (MoS₂) deposited on various substrates: Si/SiO₂, hexagonal boron nitride (h-BN), sapphire, as well as suspended. Room temperature Raman scattering spectra are investigated under both resonant (632.8 nm) and non-resonant (514.5 nm) excitations. A rather weak influence of the substrate on the Raman scattering signal is observed. The most pronounced, although still small, is the effect of h-BN, which manifests itself in the change of energy positions of the E' and A'₁ Raman modes of single-layer MoS₂. We interpret this modification as originating from van der Waals interaction between the MoS₂ and h-BN layers.
2
Content available remote

Raman Spectroscopy of Shear Modes in a Few-Layer MoS₂

100%
EN
We study low frequency vibrational modes in atomically thin molybdenum disulfide (MoS₂) by means of the Raman scattering spectroscopy. A shear mode related to rigid interlayer vibrations is identified. Its energy evolution with the increasing number of layers is well described using a linear chain model with only nearest neighbor interactions. The resulting force constant (Kₓ = 2.7 × 10¹⁹ N/m³) corresponds well to the previously published data.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.