Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
CdSe quantum dots were synthesized using thioglycolic acid as stabilizer in aqueous solution under N_{2}. The UV-vis spectrometry and fluorescence spectra indicate that the bimodal quantum dots were formed and the optical band gaps are about 650 nm and 750 nm, respectively. The quantum dots coated with TO were prepared in room temperature, and the fluorescence characteristic was studied. The result showed that the peak shift of quantum dots fluorescence spectra can mainly be due to the change of the capping layer, resulting in the confinement energy change. This is vital for the investigating on of the forming process and mechanisms of the combination of thiazole orange dye and quantum dots.
EN
Ag-ZnO composite thin films were prepared on glass substrates by chemical bath deposition at lower temperature. The samples were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence and the optical transmission spectra. The morphology analysis showed that Ag nanoparticles were not deposited on the ZnO nanorods surface but on the glass substrate. The influence of the reaction time on the size and density of Ag nanoparticles was studied, the results showed that the reaction time played an important role in determining of the optical characteristics. There were two obvious photoluminescence peaks located at about 395 nm and 471 nm, respectively. The blue emission centered at 471 nm can be ascribed to the electron transition from Zn_{i} to V_{Zn}.
EN
Vertically well-aligned ZnO nanorods arrays were synthesized on sapphire substrates by chemical bath deposition. Those sapphire substrates were seeded to control the density and orientation of ZnO nanorods using sol-gel method. Well-aligned and uniformly distributed ZnO nanorods in a large scale were obtained with strongly (002) preferential orientation. The structural properties were characterized by X-ray diffraction spectrometer and morphological characteristics were analyzed by scanning electron microscopy, respectively. The ZnO nanorods are obvious hexangular wurtzite structure and preferentially oriented along the c-axis (002) and growth vertically to the substrates. The optical properties were further thoroughly studied. What is more, the influences of the strain between substrate and ZnO nanorods due to thickness of the ZnO seed-layer on the characteristics and optical properties of ZnO were also analyzed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.