Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The information on the quantity of various types of combustible wastes registered in the Lower Silesia Marshal Office over the 2003 - 2005 years (waste codes - 02, 03, 04, 07, 12, 15, 16, 17, 19 and 20) was collected and then the quantities of individual wastes from different sources were summarized depending on the waste sort i.e. waste paper (cellulose), plastics, timber, textiles and rubber. The physiochemical properties and the chemical composition of the impurities in the selected waste sorts were determined and discussed while taking into account their usefulness and the necessary treatment operations for the alternative fuels production.
2
Content available remote

Photodegradation of organic compounds in water

100%
EN
The application of photocatalytic processes for the decontamination treatment of polluted water has inspired very extensive studies. Titanium dioxide with its large band gap energy and appropriate redox potential was found as one of the most promising semiconductors for the photodegradation of pollutants in the water as well as in gas phase. The titania-silica aerogels obtained by a simple co-hydrolysis method was applied in the photodegradation of the model organic compound. Different ageing times and heat treatment temperatures were found to influence both the activity and the textural properties of the photocatalysts. The obtained aerogels are efficient photodegradation catalysts of methylene blue and allow a removal up to 98 and 78% of the model pollutant from 20 and 500 ppm solutions, respectively.
EN
In the first research studies series a selection of the quantitative composition of catalyst active phase composition (iron, copper and manganese) deposited on mineral-carbon support was carried out. It was found on the basis of the selection studies series that the best results were attained when copper and manganese were used as catalyst components. The quantitative composition of the denitrogention catalyst was estimated using a statistical method of experiment planning and metals content changed in the range 0.5 - 1.5wt % for both metals. Catalyst activity in nitric oxide reduction by ammonia was determined in the dependence on an active phase composition in the temperature range 100 - 200°C, at GHSV (Gas Hour Space Velocity) 6 000 and 10 000 Nm3/m3h, NO concentration 400 ppm, NH3/NO ratio 1:1. A graphic presentation of the obtained results was made using the UNIPLOT program. The highest activity in nitric oxide reduction by ammonia presented copper - manganese catalysts prepared by the impregnation of mineral-carbon support with active metals salts solutions and calcination after each metal impregnation with copper (up to 1.5 wt %) and manganese (up to 1.5 wt %).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.